UWB (Ultra Wideband) Communication System

Umut Akyol
Haris Kremo
Ahmed Turk
John Youssef

What is UltraWideBand?

- FCC: bandwidth is more than 25% of a center frequency or more than 1.5 GHz
- Typically implemented in a carrier-less fashion (Base-band modulation)
 - Directly modulate an "impulse" with a very sharp rise and fall time => a waveform that occupies several GHz.
- Historically started with radar applications for military use

FCC UWB Emission Limit for Outdoor Handheld Systems

FCC UWB Emission Limit For Indoor Systems

Information Modulation (continued)

Figure 2. A Monocycle Pulse Train In The Time and Frequency Domains

Theoretical Motivation

- Shannon Channel Capacity Theorem
 - Capacity grows faster as a function of bandwidth than as a function of power

$$C = B \log_2 \left(1 + \frac{P}{BN_0} \right)$$

Where:

C = Channel Capacity (bits/sec)

B = Channel Bandwidth (Hz)

P = Received Signal Power (watts)

 N_{θ} = Noise Power Spectral Density (watts/Hz)

C is an increasing function of B

Capacity of a Gaussian Channel

Information Modulation

Pulse length <1ns; Energy concentrated in 2-6GHz band; Power < 10uW

- Pulse Position Modulation (PPM)
- Pulse Amplitude Modulation (PAM)
- On-Off Keying (OOK)
- Bi-Phase Modulation (BPSK)

Why is UWB attractive?

- 1. Simplicity: it's essentially a base-band system (carrier-free), for which the analog front-end complexity is far less than for a traditional sinusoidal radio.
- 2. High spatial capacity (bps/m²)
- 3. Low power (Bluetooth:1Mbps,10m,1mW UWB: 1Mbps,10m,10)
- 4. Low cost, simple implementation
- 5. Immune to multipath fading as well as multi-user interference

Two main data modulation schemes used for UWB systems

 Time hopping pulse position modulation (TH-PPM)

 Direct spread code division multiple access (DS-CDMA)

Basic Transmitter Model For TH-PPM

- Transmitter Model with typical time hopping format with Pulse-Position Modulation (PPM):
 - Step 1: Define monocycle waveform

$$s^{(k)}(t) = \sum w(t)$$

- S^(k) is the kth transmitted signal
- w(t) represents the transmitted monocycle waveform
- Step 2: Shift to the beginning of Time frame

$$s^{(k)}(t) = \sum_{i} w(t - jT_f)$$

- Tf is the pulse repetition time or frame time
- j is the j th monocycle that sits at the beginning of each time frame.

248 IMPULSE RADIO

Figure 7.1 A typical received monocycle $w_{\rm rec}(t)$ at the output of the antenna subsystem as a function of time in nanoseconds.

Step 3 – Pseudorandom Time Hopping

$$s^{(k)}(t) = \sum w(t - jT_f - c_j^{(k)}T_c)$$

- To eliminate catastrophic collisions in multiple accessing
- {C_i (k)} are time hopping code, periodic pseudorandom codes
- T_c is the additional time delay that associate with the time hopping code
- Step 4 Data Modulation

$$s^{(k)}(t) = \sum_{i} w(t - jT_f - c_j^{(k)}T_c - \delta d_{[j/N_s]}^{(k)})$$

- {d_i (k)} is the primary data sequence of the transmitter
- Data are transmitted every Ns monocycles per symbol
- The symbol δ is the time shift that applies to the monocycle, and we define such operation happens when 1 is transmitted.

Receiver Block Diagram for the reception of the first user's signal

Receiver Model

Signal at Receiver

$$r(t) = \sum_{k=1}^{Nu} A_k s^{(k)} (t - \tau_k) + n(t)$$

- A_ks^(k) models the attenuation of transmitter k's signal
- N(t) is the white Gaussian noise
- tau_k is time asynchronisms between clocks of transmitter and the receiver
- Correlation template signal

$$v(t) = w(t) - w(t - \delta)$$

– V(t) is the pulse shape defined as the difference between two pulses shifted by the modulation parameter δ . It will then be correlated with the received signal for a statistical test

Figure 7.2 The template signal v(t) with the modulation parameter δ chosen to be 0.156 ns. Since the template is a difference of two pulses shifted by δ , the non-zero extent of the template signal is approximately δ plus the monocycle width, i.e., about 0.86 ns.

The optimal decision rule (one monocycle)

$$\mathbf{H}_{0} \Leftrightarrow \int_{t \in T_{i}} r(t) v_{bit} \left(t - jT_{f} - c_{j}^{(k)} T_{c} \right) dt > 0$$

- Pulse correlator output = α_i

$$H_{0} \Leftrightarrow \sum_{j=0}^{N_{S}-1} \int_{\tau_{1}+jT_{f}}^{\tau_{1}+(j+1)T_{f}} r(t)v_{bit}(t-jT_{f}-c_{j}^{(k)}T_{c})dt > 0$$

- Test statistic = α (one symbol)
- if $\alpha > 0$, the symbol transmitted is 0, else it is 1

Implementation of Time shift-keyed Equicorrelated (EC) signal sets for UWB TH_PPM M-ary modulation

- What is EC signal sets?
- Generating EC sequences.
 - The simplest method is using Hadamard matrix and removing first row and column with constraining number of frames per bit to be 2^m-1,p,p(p+2) (p is prime number)
 - Each row is an a sequence of bits corresponding to one of the M symbols
- the modulated signal for 1 bit is represented by

$$s(t) = \sum_{k=0}^{N_s-1} p(t - kTf - b_j^k \tau_2), i = 1, 2, ..., M$$

EC signal sets parameters

- τ₂ is the time delay that corresponds to the minimum autocorrelation between p(t) and p(t- τ₂).
- The correlation of the EC signals is given by:

$$\lambda = \frac{\frac{N_s - 1}{2} \gamma_w(0) + \frac{N_s + 1}{2} \gamma_w(\tau_2)}{N_s}.$$

$$\lambda \approx \frac{1+\gamma_w(\tau_2)}{2}.$$

Receiver Simplification using EC signals

 Instead of using M correlators for each user, by using the properties of the EC signals, the receiver can be simplified to the use of two correlators and M store and sum circuits, the function is given by:

$$y_{j} = \sum_{k=0}^{N_{s}-1} \left[(b_{j}^{k} - 1)z_{1}(k) + b_{j}^{k}z_{2}(k) \right],$$
where
$$z_{m}(k) \stackrel{\triangle}{=} \int_{kT_{s}}^{kT_{f}+T_{p}+\tau_{2}} x(t)p(t-kT_{f}-\tau_{m})dt, \quad m = 1, 2.$$

Receiver Schematic (1 correlator)

Multi access performance limits for EC signals

 Degradation factor as a function of the number of users:

$$DF(N_u) = \frac{1}{1 - \mathbf{SNRb}_{spec} \left[\frac{1}{R_b} \frac{\mu/T_f}{(N_u - 1)} \right]^{-1}}.$$

Maximum bit transmission rate:

$$R_{\text{max}} \stackrel{\triangle}{=} \frac{\lim}{\text{DF} \to \infty} N_u(\text{DF}) = \frac{1}{\mathbf{SNRb}_{\text{spec}}} \frac{1}{N_u - 1} \frac{\mu}{T_f}.$$

Multi access performance limits for EC signals (cont.)

Maximum Number of users:

$$N_{\text{max}} \stackrel{\triangle}{=} \frac{\lim}{\text{DF} \to \infty} N_u(\text{DF}) = \frac{1}{\mathbf{SNRb}_{\text{spec}}} \frac{1}{R_b} \frac{\mu}{T_f} + 1.$$

The multiple-access transmission capacity:

$$C(B) \simeq \frac{1}{\log(2)} \frac{\mu/T_f}{N_u - 1} = C_{\rm IR}(N_u)$$

where:

$$\mu = \frac{(E_w[1 - \gamma_w(\tau_2)])^2}{2\sigma_a^2} \qquad \sigma_a^2 = \frac{1}{T_f} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} w(t - s)[w(t) - w(t - \tau_2)] dt \right]^2 ds,$$

where SNRb_{spec} is the specified operating snr to achieve the desired probability of error

Degradation Factor

 Degradation Factor is the additional amount of Snr required by user 1 to overcame the MAI:

Behavior of the prob(SNR(out)) as a function of Number of users

Simulation Results

Model Example

Bit error performance for M-ary UWB TH-PPM using EC signals

Multi user behavior of UWB TH-PPM using EC signals

Direct Sequence, DS-UWB

- Similar to conventional CDMA carrier based radios
- Spreading sequence is multiplied by an impulse sequence
- Modulation is provided as in CDMA

Basic signal model for UWB DS-CDMA

Transmitted waveform is defined as,

$$S_{k}(t) = \sqrt{P_{k}} \sum_{i=-\infty}^{\infty} \sum_{n=0}^{N_{r}-1} b_{i}^{k} a_{n}^{k} z(t-iT_{r}-nT_{c})$$

- Where z(t) is the transmitted monocycle waveform,
 - b_i^k are the modulated data symbols for the kth user,
 - a_n^k are the spreading chips,
 - T_r is the bit period, T_c is the chip period,
 - $-N_r = T_r / T_c$ is the spread spectrum processing gain, and
 - P_k is the transmitted power

The Received signal

- r(t)=s(t) + M(t) + I(t) + n(t)
- M(t) is the multiple access interference

$$M(t) = \sum_{k=1}^{K} \sum_{i=-\infty}^{\infty} \sum_{n=0}^{Nr-1} b_i^k a_n^k z(t - iTr - nTc - \tau_k) \qquad 0 \le \tau_k < T_r.$$

- I(t) is the narrow band interference assuming raised cosine wave
- The receiver is correlator

DS-CDMA simulation

Binary spreading

Ternary spreading

Episodic Transmission (Ternary Spreading)

- Send n pulses for per information bit
- Allow for off time separation
- Modeled as random ternary with pmf,

$$p_b(b_i) = (1 - 2\alpha)\delta(b_i) + \alpha \cdot \delta(b_i - 1) + \alpha \cdot \delta(b_i + 1)$$

Chernoff Bound on the probability of bit error,

$$\qquad \qquad P_e < \exp\left(\frac{-n\mathcal{E}_k}{2I_{\mathbf{0}}}\right) \quad \text{where ϵ is the chip energy,}$$

$$I_0 = \sigma_v^2 + 2\alpha \sum_{\substack{j=1\\j\neq k}}^K \mathcal{E}_j$$

where ε is the chip energy,

K is the number of users,

 $\sigma_v^{\ 2}$ is the AWGN variance

Ternary Spreading Cont,

- As α becomes smaller, MUI may be significantly reduced (with a corresponding reduction in bit rate)
- Demonstrate the performance of such a sequence by using ternary sequences with aperiodic zero correlation zones (ZCZ).

ZCZ Sequences

 These are the sequences which have a zero valued window around the zero shift, in the autocorrelation (AC) and crosscorrelation (CC) function.

- $Z_{CZ} = \min \{Z_{ACZ}, Z_{CCZ}\}$
- Interference between users separated by delays that are within this window or interference due to delayed replicas of a users signal due to the multipath channel will be eliminated.

A simple way to create ternary ZCZ sequences

- Take M orthogonal binary sets
- Insert zero padding
 of length Z₀ between
 the elements of the sets

 Shift each subset a different number of chips

The performance of one user system for Binary DS-UWB (AWGN and NB Interference)

Multiuser performance of Binary DS-UWB (1-8 users, AWGN & NB Interference)

Ternary Spreading Multiuser Performance in AWGN (69Mbit/s)

Performance of 1 watt Ternary DS-UWB with NBI (69Mbit/s, SNR=7dB)

Conclusion

- By using EC signals in TH-PPM with large values of M it is possible to increase number of users supported by the system for given multiple access performance and bit transmission rate.
- The analysis shows that impulse radio using TH-PPM is potentially able to provide multiple-access communications with combined transmission capacity of over 500 Mbps at bit error rate in the range of 10⁻⁴ to 10⁻⁸
- The graphs shows that UWB CDMA reduces the impact of the multi-user interference
- Increasing the number of users does not affect the probability of error as it should be for any other system