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Abstract

Robust Header Compression (ROHC) has recently been proposed to reduce the large protocol header
overhead when transmitting voice and other continuous media over RTP/UDP/IP in wireless networks.
In this paper we evaluate the real-time transmission of GSM encoded voice with ROHC over a wireless
link. We first present a tutorial on voice quality evaluation. We introduce an evaluation methodology
that combines elementary objective voice quality metrics with a frame synchronization mechanism. The
methodology allows networking researchers to conduct effective and accurate quality evaluation of packet
voice. Besides the impact of ROHC on the voice quality we consider the impact of ROHC on the consumed
bandwidth and the delay jitter in the voice signal. We find that for a wide range of error probabilities
on the wireless link, ROHC roughly cuts the bandwidth required for the transmission of GSM encoded
voice in half. In addition, ROHC improves the voice quality compared to transmissions without ROHC,
especially for large bit error probabilities on the wireless link. The improvement reaches0.26 on the
5-point Mean Opinion Score for a bit error probability of10−3.

I. I NTRODUCTION

While the main service of first and second generation wireless cellular systems has been voice, third

generation systems are designed to support a wide range of services, including audio and video applica-

tions. This flexibility is achieved by using the Internet protocol (IP) in conjunction with the User Datagram

Protocol (UDP) and the Real Time Protocol (RTP). One major problem with the RTP/UDP/IP protocol

architecture is the large overhead, which affects the limited bandwidth of wireless channels. A low bit rate

speech application can result in IP packets with a ratio of 30 bytes of payload to 60 bytes of overhead.

Recently, RObust Header Compression (ROHC) [1] has been proposed to compress the protocol headers

for packet transmission over a wireless link.

In this paper we provide an evaluation methodology and performance results for the real-time trans-

mission of voice with ROHC over a wireless link. Our evaluation metrics are the compression gain

(reduction in header and total packet size), the voice quality, and the delay jitter. Importantly, we employ

a wide array of objective voice quality metrics, including both the traditional and the segmental Signal to
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Noise (SNR) ratio, spectral distance metrics, and parametric distance metrics. The considered parametric

distance metrics include the cepstral distance metric, which can be transformed into the Mean Opinion

Score (MOS), thus enabling us to quantify the effect of ROHC on the voice quality in terms of the MOS.

Our delay jitter measurements do not consider the jitter of the voice packets; instead we consider the jitter

within the voice signals, which is closer related to the subjective quality perceived by the user.

video client video server
I/O devices transport

network quality

objective voice/video quality

subjective voice/video quality

voice voice

Fig. 1

DIFFERENT PERSPECTIVES ON QUALITY INROHC PERFORMANCE EVALUATION.

Generally, when evaluating ROHC one may distinguish between three qualities, namely the network

quality, the objective quality, and the subjective quality, as illustrated in Figure 1. While the network

quality reflects the provider’s perspective, the objective and the subjective quality reflect the customer’s

perspective. The network quality can be easily measured by network parameters, such as the packet loss

rate or the packet delay. The subjective quality is generally more meaningful than the network quality,

as it relates directly to the user perceived quality. Assessing the subjective quality, however, is very

tedious as it requires listening tests with a large number of test persons. For this reason, objective quality

measures that predict the subjective quality are typically employed in the evaluation of voice transmission

systems. In this paper we give a tutorial introduction to elementary objective voice quality metrics that

allow for computationally efficient and accurate voice quality evaluations without requiring the purchase

of specialized software.

We find in our evaluation that for a wide range of bit error probabilities on the wireless link, ROHC

reduces the protocol overhead for voice transmission with IPv4 by approximately 85%, which reduces

the bandwidth required for a GSM coded voice transmission by about 47%. On top of these bandwidth

savings, ROHC improves the voice quality. On the 5-point MOS scale the improvement increases roughly

exponentially with the bit error probability. The improvement is about 0.028 for an error probability of

10−4.5 and reaches 0.134 and 0.264 as the error probability increases to10−3.6 and 10−3. We also find

that ROHC slightly increases the jitter for small error probabilities and slightly reduces the jitter for large

error probabilities.

This paper is organized as follows. In the following subsection we review related work. In Section II

we describe the principles and integration of ROHC in the IP protocol stack. In Section III we describe

our evaluation methodology. In Section IV we explain how to evaluate the objective voice quality using
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an array of metrics ranging from Signal to Noise (SNR) ratio based metrics to spectral and parametric

distance metrics which are based on a linear predictive coding (LPC) analysis. In Section V we present

our segmental cross correlation (SCC) algorithm for synchronizing the original voice stream with the

voice stream after network transport. In Section VI we present our bandwidth reduction, objective voice

quality, and delay jitter results for using ROHC. In Section VII we summarize our contributions.

A. Related Work

There exists a large body of literature on the development of header compression schemes for wire-

less networks and on the evaluation of these schemes in terms of the network metrics of throughput,

packet delay, and packet jitter. This literature is comprehensively surveyed in [2]. The impact of header

compression on the quality of the transmitted medium (e.g., voice) has received very little attention so

far. The only study in this direction that we are aware of is [3]. In [3] the objective speech quality

degradation (using the traditional SNR which has only a weak correlation with user perception) is studied

for Robust Checksum-based Compression (ROCCO) and the Compressed Real Time Protocol (CRTP),

which may be considered as precursors to ROHC. In contrast, in this paper we consider the state-of-the-art

ROHC compression scheme and evaluate the voice quality using an array of objective metrics that allow

accurate predictions of the subjective voice quality of hearing tests. (The impact of ROHC on the wireless

transport of video, whose quality evaluation is significantly different from the voice quality considered

here, is examined in a companion paper [4].)

As reviewed in more detail at the beginning of Section IV, objective voice quality evaluation metrics

have received significant attention over the past 20 years in the research literature of the acoustics and

signal processing community. However, to the best of our knowledge there is no succinct self-contained

tutorial available that is readily accessible and usable by the networking engineer or researcher. For this

reason we provide a tutorial on objective voice quality evaluation in Section IV of this paper.

II. OVERVIEW OF ROBUST HEADER COMPRESSION

A multimedia stream packet composed for an IP network transmission consists of a 20 byte IP header,

an 8 byte UDP header, and a 12 byte RTP header, as shown in Figure 2. The IPv6 version requires

a 40 byte IP header, so the total header size can sum up to 60 bytes. A speech application generates

compressed data at a low bit rate of around 13 kbit/s. Considering a typical payload smaller than 40

bytes, the ratio of header size to payload results in an significant waste of link bandwidth. The ROHC

compressor replaces the RTP/UDP/IP overhead by its own, much smaller header. On the receiver side the

decompressor transforms the ROHC header into the original protocol layer headers.

In Figure 3, the different header fields of an IP packet are classified in order to show the potential of

a compression scheme.

Many IP header fields of a given data flow are static, i.e., do never change. ROHC stores the values

of these static header fields asstatic contextat the decompressor. More challenging for the compression

scheme is the treatment of the changing (dynamic) fields in the IP header. ROHC uses linear functions

based on the packets’ sequence numbers to derive the values of the dynamic header fields, see [1] for

details. The parameters characterizing these linear functions are stored and updated as so-calledfull context
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HEADER FIELDS FORRTP/UDP/IPPACKETS (VERSION4)

WITH THE APPROPRIATE DYNAMICS.

at the decompressor. We also note that some IP header fields can be derived (inferred) from other header

fields at the decompressor and are therefore not transmitted once the static context is established.

The fundamental challenge in header compression for transmission over wireless links is to maintain the

correct context at the decompressor in the face of quite frequent bit errors in the received packets. ROHC

supports three different modes for maintaining the context in different wireless systems. Theunidirectional

modeis designed for systems without a feedback channel from the decompressor to the compressor, i.e.,

where the decompressor can not acknowledge the correct receipt of context information. To overcome this

limitation, the compressor periodically retransmits the context information. Thebidirectional optimistic

modeand thebidirectional reliable modeare designed for systems with a feedback channel from the

decompressor to the compressor, i.e., where the decompressor can acknowledge the correct receipt of

context information and/or send negative acknowledgements to request the retransmission of context

information. With the bidirectional optimistic mode, bit errors in the compressed header are detected

with a 3-bit cyclic redundancy check (CRC) code. When the CRC check fails the decompressor generally

discards the affected packet and attempts to repair its context either locally or by requesting a context

update from the compressor. The reliable mode extends the optimistic mode by a more complex error

detection and correction which uses a larger number of coding bits. Our evaluation concentrates on the

optimistic mode, since it gives generally the best compression efficiency. Also, with the results of the

optimistic mode, it is possible to predict the results for the reliable mode

To assess the maximum compression gain (packet size reduction) with header compression we consider

an ideal compression scheme that reduces the header size to zero bytes. Clearly, such an ideal compression
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TABLE I

TEST MATERIAL FOR VOICE QUALITY EVALUATION

text language speaker duration total size GSM size
file [sec] [kB] [kB]
49.wav A English female 19.15 306.45 31.6
53.wav B German female 16.64 266.21 27.46
54.wav B German male 16.79 268.72 27.72

TABLE II

MEAN OPINION SCORE

MOS
5 imperceptible
4 just perceptible but not annoying
3 perceptible and slightly annoying
2 annoying but not objectionable
1 very annoying and objectionable

scheme has a compression gain (i.e., reduces the packet size) by

gainmax =
headersize

headersize+ payload
. (1)

With a GSM codec generating 33 byte frames, the maximum saving potential is55% when using IPv4,

it grows to 65% when using IPv6. As the overhead is constant, the maximum saving with compression

increases as the payload size decreases. Therefore ROHC is well suited for low bit rate voice streams,

where the header size is typically larger than the payload.

In the commonly used RTP/UDP/IP protocol suite, ROHC is installed between the network and the link

layer. In the third generation Universal Mobile Telecommunication System (UMTS), ROHC compressor

and decompressor are part of the UMTS mobile phone and the corresponding UMTS radio network

controller (RNC). (Other solutions are possible, but ROHC always resides above the link layer.) The other

Internet components do not notice the usage of a compression scheme, but the wireless service provider

can take advantage of a significant reduction of the required bandwidth, as demonstrated by our results

in Section VI. ROHC requires from the link layer that the packets are sent in a strictly sequential order.

Also the packets are not allowed to contain routing information (single hop restriction).

ROHC supports three different modes in order to adapt to different requirements of reliability and

channel capacity. Theunidirectional modeis the least efficient mode as there is no feedback channel from

the decompressor to the compressor. To ensure a correct context at the decompressor side, the compressor

periodically has to sent context information. Thebidirectional optimistic modeand thebidirectional

reliable modeuse feedback information sent from the decompressor to the compressor. The feedback

allows the compressor to respond to successful or unsuccessful transmissions. The reliable mode extends

the optimistic mode by a 7-bit error correction scheme. Our evaluation concentrates on the optimistic

mode, since it gives generally the best compression efficiency. Also, with the results of the optimistic

mode, it is possible to predict the results for the reliable mode.

III. E VALUATION METHODOLOGY

The ROHC measurements were conducted on a testbed consisting of two Linux machines. The Linux

kernels had been enhanced by an ROHC implementation (provided by the acticom GmbH, www.acticom.de).

We used three different voice files (track 49, track 53, and track 54) obtained from the European

Broadcasting Union [5], as shown in Table I.

The files, given in the wave file mono format, are first down sampled to 8 kHz and then transferred to

the communication system shown in Figure 4. On the sender’s side the wave file is GSM encoded (using

the encoder [6]). The coded file consisting of 33 byte GSM frames, is passed to the RTP/UDP/IP protocol
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stack. (The wave file header (44 bytes) is not part of the transmission, because the GSM encoder expects

raw audio data.) The RTP/UDP/IP packet finally arrives at the ROHC and link layers. The two Linux

machines are connected by an Ethernet network. Recent channel characterization studies [7] have revealed

that uncorrelated bit errors give a good approximation of the error process in 3G networks. Consequently,

we simulate uncorrelated bit errors on the link layer. We use nine different bit error probabilities ranging

from 10−6 to 10−3. Figure 5 illustrates how the original and the transferred (and possibly distorted) voice

files are employed in our quality evaluation. As the ROHC is optional, the quality evaluation is obtained

by a comparison of transmissions with and without ROHC. This comparison answers the question whether
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METHODOLOGY OFROHC EVALUATION .

the voice quality is deteriorated or improved by using ROHC.

IV. V OICE QUALITY EVALUATION METRICS

Expensive and time consuming speech perception tests with human listeners as detailed in [8] are

required to reliably obtain the subjective voice quality achieved by a communication system. The subjective

voice quality is typically given on the 5-point Mean Opinion Score (MOS) scale summarized in Table II.

To avoid the expense and effort required for subjective voice quality evaluation, significant effort has been

devoted to developing objective, computer based metrics that predict the results of a subjective evaluation.

Generally, there are three classes of objective voice quality evaluation metrics, the network parameter

based metrics, the psycho-acoustic metrics, and the elementary metrics. The parameter based metrics do

not consider the actual voice signal. Instead, these metrics sum impairment factors that characterize the

individual components of the communication system. The packet loss and delay in a packet-voice system,

for instance, are translated into impairment factors according to provisional translation tables in the ITU–

E–model [9], which is one recent proposal for a parameter based metric. Parameter based metrics, such
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TABLE III

CORRELATIONS BETWEEN OBJECTIVE VOICE QUALITY

METRICS AND SUBJECTIVE VOICE QUALITY. THE DISTORTION

TYPES (INDEXED BY THE FOOTNOTE MARKERS1–8) ARE

GIVEN IN TABLE IV.

Objective Metric Correlation
(traditional) SNR +0.241/+ 0.312

segmental SNR +0.771/+ 0.782

inverse linear unweighted distance +0.633/+ 0.484

unweighted delta form −0.613/− 0.515

log root mean square (RMS) (–)10

Log Area Ratio −0.623/− 0.654

Energy Ratio [17] −0.593/− 0.614

log likelihood [17] −0.493/− 0.486

cepstral distance −0.967/− 0.958/− 0.939

TABLE IV

DISTORTION TYPES FOR THE MEASURED CORRELATIONS.

THE DISTORTION TYPES INDEXED BY1–4 ARE FROM [18].

Index Distortion
1 waveform coders: 8 types
2 additive– and narrow-band noise
3 coding distortions, controlled distortions,

and narrow-band distortions: 23 types
4 waveform coders and controlled

distortions in the time and
frequency domain, 18 types

5 cellular phone: [19]
6 cellular phone: [20]
7 coding and other non-linear

distortions: [21]
8 PCM, ADPCM, G.728, MNRU: [14]
9 noise masking, band pass filtering,

echo, and peak clipping: [22]
10 theoretical approach: [23]

as the E–model hold promise for predicting the subjective voice quality [10] but still require extensive

refinements and verifications [11].

The psycho-acoustic metrics transform the voice signals to a reduced representation to retain only the

perceptually significant aspects. These metrics aim to predict the subjective quality over a wide range of

voice signal distortions, allowing for the development as well as the evaluation of non-waveform preserving

speech coding algorithms. These coding algorithms perform waveform distortions that are perceptually

not significant. Various complex metrics have been developed and refined over the last decade. These

include the Bark spectral distance [12], the measuring normalizing blocks (MNB) technique [13] [14],

and the PESQ measure [15] [16], which was recently standardized by ITU–T as recommendation P.862.

Elementary objective voice quality metrics rely on low-complexity signal processing techniques to

predict the subjective voice quality. The elementary metrics have generally smaller correlations with

the subjective voice quality than the highly complex psycho-acoustic metrics and do not provide the

perception modeling that is needed for psycho-acoustic coder algorithm development. The elementary

metrics, however, do represent a good engineering trade-off for networking researchers in that they allow

for fairly detailed conclusions about the voice quality while having low computational complexity. We

also note that in our evaluation methodology, as illustrated in Figure 5, we focus on system modification

in the networking domain (e.g., the introduction of ROHC). Both, the unmodified system (without ROHC)

and the modified system (with ROHC) employ the same voice codec and thus experience approximately

the same voice codec distortions. Our evaluation is focused on the impact of the modification in the

networking domain on the voice quality (and is not designed to evaluate voice codec distortions).

We have selected the elementary metrics listed in Table III for our evaluations. The reliability of objective

voice quality metrics is usually verified by a correlation analysis between the calculated objective metric

and subjective hearing tests among a distorted data base. Table III gives the distortion types that the various

objective metrics have been examined for and the resulting correlations to subjective hearing tests. The

larger the magnitude of the correlation, the better the prediction of the subjective voice quality. We note
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that the traditional SNR has a poor correlation performance. However, we include it because it is often

considered as a purely objective quality metric. The RMS spectral distance is included because in [23],
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COVER DIFFERENT TYPES OF DISTORTIONS.

it is shown that it is a very meaningful measure for speech perception, as it can be physically interpreted

and efficiently computed. We note that the cepstral distance achieves the best correlation performance for

its respective distortion types. In addition to this good correlation performance, the cepstral distance has

the distinctive property that its values can be transformed to the predicted mean opinion score (MOS)

by a publicly available mapping. (We note that mappings from other objective metrics to a subjective

score are generally possible, however, we are not aware of any such mapping being publicly available.)

As illustrated in Figure 6, many metrics use the same coefficients and are similarly calculated. However,

their performance differs among different types of distortions, as verified in [14], [18], [19]–[22].

We close this general overview of voice quality evaluation metrics by noting that we have chosen the

elementary metrics in Table III as they represent a sensible engineering approach for our networking

study. The chosen elementary metrics have good correlations with the subjective voice quality and thus

allow for meaningful conclusions about the voice quality. At the same time the chosen metrics are

computationally efficient and do not require costly proprietary software (in fact we make our evaluation

software source code publicly available: http://www.eas.asu.edu/˜mre). In order to cover a reasonably

wide range of distortion types we selected a set of elementary metrics (see Table III), which as we shall

demonstrate are highly correlated to the cepstral distance (and thus to the MOS) for the considered wireless

voice transmission. To synchronize the received voice stream after packet based transport we developed

a low complexity, yet effective segmental cross correlation (SCC) algorithm, see Section V.
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TABLE V

NOTATION OF OBJECTIVE MEASURES

n frame index
N total number of frames in voice file
m sample index
M number of samples in a frame;

M = constant = 160
xn,φ(m) amplitude of samplem in framen

of the undistorted signal
xn,d(m) amplitude of samplem in framen

of the distorted signal
F (n) distortion index for framen
D total quality of file calculated by a metric

A. Notation

For the calculation of the objective quality metrics a given uncompressed voice signal is broken into

frames of 20 msec duration. These 20 msec frames are introduced for the voice quality evaluation in

accordance with the human voice recognition. LetN denote the total number of frames in a given voice

file. Let M denote the total number of samples in a given framen, n = 1, . . . , N . (Note that with a

sample rate of 8 KHz a 20 msec frame containsM = 160 samples, each 16 bits worth of uncompressed

voice data. These 320 bytes of voice data are typically compressed into one 33 byte GSM frame.) Let

m, m = 1, . . . ,M , index the individual samples within a given frame. Throughout we denoteφ for

the undistorted signal andd for the distorted signal (after network transport). Letxn,φ(m) denote the

amplitude of samplem in framen of the undistorted voice signal, and letxn,d(m) refer to the distorted

sample. The signal energyS(n) and the noise energyN(n) of framen are given by

S(n) =
M∑
m=1

x2
n,φ(m) (2)

and

N(n) =
M∑
m=1

[xn,d(m)− xn,φ(m)]2. (3)

Each metric gives a distortion indexF (n) for a given framen. The total qualityD of a given distorted

voice file with respect to the corresponding undistorted file is typically obtained by averaging the individual

distortion indices:

D =
1
N

N∑
n=1

F (n). (4)

A slightly more complex approach may weigh the distortion indices of the individual frames by the

corresponding signal energies, but this weighting has typically negligible impact on the total quality.

Equation (4) is only used with the spectral and parametric measures, because the SNR metrics give

directly the total quality. Table V summarizes the notation of our objective measures.

B. SNR Measures

The traditional SNR and thesegmental (short–time or framed)SNR are given by

Dtrad = 10 · log10

∑N
n=1 S(n)∑N
n=1N(n)

(5)
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and

Dseg = 10 · log10

N∑
n=1

S(n)
N(n)

. (6)

Whereas the segmental SNR is based on a frame by frame calculation, the classical SNR is calculated

across the entire sequence ofN frames. As a result, the classical SNR aggregates the signal energy in

the entire file and relates this aggregate signal energy to the aggregate noise energy. In contrast, the

segmental SNR relates the signal energy of each individual frame to the noise energy of the frame. This

finer granularity relates more meaningfully to the perception of the voice file.

C. Spectral Distances

The spectral distance metrics are based on the so-calledspectral magnitudeV (n, l), which is provided

in Appendix C. Based on the spectral magnitude, the frame distortion indices for the inverse linear

unweighted distance, the unweighted delta form, and the log root-mean-square distance are given by

Finv(n) =

[
1
L

L−1∑
l=0

[
1

b+ |Vφ(n, l)− Vd(n, l)|

]p]1/p

, (7)

Fδ(n) =

[
1
L

L−1∑
l=0

|Vφ(n, l)δ − Vd(n, l)δ|q
]1/q

, (8)

and

Frms(n) =

√√√√ 1
L

L−1∑
l=0

[
log10

VΦ(n, l)
Vd(n, l)

]2

, (9)

whereL is usually set to128. In [18], the constantsp = 8, q = 1, andδ = 0.2 have been heuristically

verified to achieve good performance.

D. Parametric Distances

Parametric distances use transformations of the linear predictive coding (LPC) coefficients, which are

presented in Appendix B. We consider three classes of parametric distance measures,

1) the log area ratiomeasure,

2) theenergy ratio/log likelihood measure, and

3) the LPC cepstral distance measure,

which are defined in [18]. The first two classes are evaluated in [18] while the third class is evaluated in

[21], [22], [14]. The log area ratio is more efficient than a spectral distance measure, because it requires

a lower computation time and gives a comparable correlation to the spectral distances.

The energy ratio/log likelihood measures are computationally even less demanding, but give lower

correlations. The log likelihood measure was one of the first objective metrics to measure the voice

quality. As these measures are strongly related to the Itakura likelihood ratio distance measure [17],

Figure 6 categorizes this class by the Itakura core.

Kitawaki et al. [21] compared elementary objective speech quality measures for voiceband codecs. The

cepstral distance had the best correspondence to the mean opinion score among all objective measures
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studied. These results are confirmed by Wu and Pols [22], who estimated a correlation of 0.926 for the

LPC cepstral distance measure with the mean opinion score. This correlation performance has been further

verified for waveform preserving codecs and for the MNRU, which is one of the most common reference

conditions for subjective and objective voice quality assessments, as part of the recent study by Voran [14].

We use the results of [21] to predict the mean opinion score from the cepstral distance.

1) Log Area Ratio Measure:From the LPC analysis, thelth Parcor coefficientKd/φ(n, l) for the

distorted/undistorted framen is calculated, as given in (28) in Appendix B. LetAR(n, l) denote thearea

ratio function:

ARd/φ(n, l) =
1 +Kd/φ(n, l)
1−Kd/φ(n, l)

. (10)

The log area ratiomeasure is given by

Flog(n) =

{
1
10

10∑
l=1

∣∣∣∣20 · log10

ARd(n, l)
ARφ(n, l)

∣∣∣∣p
}1/p

, (11)

where the constantp = 1 achieves a good performance [18].

2) Energy Ratio and Log Likelihood Measure:Let Rφ(n) denote the autocorrelation matrix of frame

n, given in (35), and~ad/φ(n) denote a vector of all LPC coefficients, given in (36). The coreI(n) of the

second class of parametric distance measures is given by

I(n) =
~aTd (n) ·Rφ(n) · ~ad(n)
~aTφ (n) ·Rφ(n) · ~aφ(n)

. (12)

The energy ratiois calculated by

Fen(n) = |I(n)|δ/2, (13)

where the best correspondence to subjective quality was obtained forδ = 0.5. The log likelihoodmeasure

is given by

Flike(n) = 10 · log10{I(n)}. (14)

3) Cepstral Distance:The cepstral distance measure calculates the difference in the shape of the

original and the distorted spectrum. It is based on LPC–derived cepstral coefficientscn,d/φ(l), see Appendix

E. The cepstral distance is defined in [21] as

Fcep(n) =
10

loge(10)

[
2

L∑
l=1

[cn,φ(l)− cn,d(l)]2
] 1

2

, (15)

whereL is the number of cepstral coefficients, which we choose equal to the order of the LPC analysis

from which the predictor coefficientsa(i) are derived.

V. SEGMENTAL CROSSCORRELATION ALGORITHM (SCC)

We transfer voice over a communication system. Thereby, voice frames may(i) be completely lost,

(ii) experience varying delays, or(iii) suffer voice signal distortions due to bit errors. The objective

voice quality is based on a comparison between the received (distorted) and the original (reference) voice

streams, which need to be synchronized for the comparison. There are generally two types of approaches

to synchronize the streams:(i) packet based approaches, and(ii) voice signal based approaches. Packet
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based approaches employ timestamps and sequence numbers (e.g., using RTP) to detect lost packets and

varying packet delays and compensate for these effects by replacing lost packets, see for instance [24], and

adjusting the playout time of the voice frame. Voice signal based approaches, on the other hand, employ

signal correlation techniques to align frames in the distorted and reference streams, see for instance [15].

For signal based synchronization we have developed the segmental cross correlation (SCC) algorithm,

which we outline in this section and employ in our measurements reported in Section VI. We note that

the voice quality evaluation methodology presented in the previous section can be employed both in

conjunction with packet based synchronization and signal based synchronization.

For the synchronization the reference file is divided into consecutive synchronization frames ofU

samples each. The goal of the synchronization is to divide the distorted file into synchronization frames

such that a frame in the distorted file matches well with the corresponding frame in the reference file.

More formally, letxw,φ(u), u = 1, . . . , U , denote the sample values in synchronization framew in the

reference file. Letxd(·) denote the sample values in the (“unframed”) distorted file. The algorithm is

based on the normalized segmental cross correlation function

SCCw(τ) =
∑U

u=1[xw,φ(u)− x̄w,φ] · [(xd(u+ (w − 1)U + τ)− x̄d(w, τ)]√∑U
u=1[xw,φ(u)− x̄w,φ]2

√∑U
u=1[xd(u+ (w − 1)U − τ)− x̄d(w, τ)]2

, (16)

where we denote

x̄d(w, τ) =
1
U

U∑
u=1

xd(u+ (w − 1)U + τ). (17)

For the first framew = 1 in a file the cross correlation is initially evaluated for a search range0 ≤ τ ≤ R.

The displacement between the frame in the reference file and the distorted file is tentatively estimated as

the displacement that attains the maximum correlation, i.e.,

τmax(w) = arg max
−R≤τ≤R

SCCw(τ). (18)

If this maximum cross correlation is larger than a threshold then the displacement estimate (match) is

accepted, otherwise the search range is increased. If an acceptable match is not found for the increased
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TABLE VI

PARAMETERS OF THE SEGMENTAL CROSS CORRELATION ALGORITHM

threshold value for a sufficient correlationB = 0.3
number of samples for one frame U = 4000
range of search area R = 200 samples
range of augmented search area R′ = 4000 samples

search range, then the synchronization fails for this distorted file (replication of the experiment). Such a

failure is usually due to failures in the measurement set-up. For the subsequent framesw, w ≥ 2, the

cross correlation is initially evaluated for the search rangeτmax(w − 1) − R ≤ τ ≤ τmax(w − 1) + R,

i.e., the search range is adaptively shifted according to the displacement of the preceding framew − 1.

The parameters synchronization frame lengthU , initial search rangeR (and policy for increasing the

search range), and acceptance threshold represent trade-offs between computational effort and likelihood

of successful synchronization (see Table VI). A successful synchronization is determined by a sufficient

correlation value, i.e., a sufficient mean value of all SCC frame correlations (this value is calculated by

our evaluation software, see source file AudioMeter.cpp, output file quality.dat, variable “correlation”) of a

synchronized voice file. Visual comparisons of the synchronized voice file and the reference file revealed

that a correlation value, which is significantly larger than the acceptance threshold valueB, indicates a

successful synchronization, thus allowing a meaningful evaluation by the elementary voice quality metrics.

For the experiments reported in the following two sections we have typically successfully synchronized

the voice files of 94 % of the experiments. The remaining 6% of the experiments did not give valid

voice files for synchronization due to problems with the measurement set-up, such as operating system

problems and hardware failures. As detailed shortly, many independent replications are conducted for each

experiment to obtain statistical confidence levels on all results.

We note that the computation time of the SCC algorithm can be reduced by using the well known Fast

Fourier Transform (FFT) algorithm. Due to space constraints we only roughly describe its application

for time synchronization and refer the interested reader to [25] for details. The SCC algorithm is based

on a cross correlation in the time domain. The reference signalxw,φ(·) and the distorted signalxd(·)
are transformed to the frequency domain using the FFT algorithm:Xφ(k) = FFT [xw,φ(·)] andXd(k) =
FFT [xd(·)]. In the frequency domain the component-wise productZ(k) = Xφ(k)·Xd(k) is calculated and

retransformed to the time domain using the inverse FFT algorithm. The result is equivalent toSCCw(τ),
in (16), thus allowing directly for the determination ofτmax.

We finally note that PESQ, which requires the purchase of proprietary software (with a cost on

the order of $ 10.000, see http://www.pesq.org), performs highly complex algorithms in the time and

frequency domain [15] and gives generally better synchronization performance than our low complexity

SCC algorithm (for which we make the source code publicly available: http://www.eas.asu.edu/˜mre).

However, the SCC algorithm does allow for meaningful delay jitter measurements in the received voice

signal, as presented in Section VI-C and synchronizes the voice signals to allow for the objective voice

quality evaluations presented in Section VI-B.
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VI. PERFORMANCERESULTS FORROHC

In this section we give an overview of our evaluations of voice transmission with ROHC. We first

evaluate the compression performance (bandwidth reduction) achieved by ROHC. Next, we employ the

objective voice quality metrics explained in Section IV to assess the impact of ROHC on the voice quality.

Finally, we evaluate the impact of ROHC on the jitter in the voice signal.

Throughout this evaluation study we consider the three voice tracks (files) given in Table I. For each track

we conduct many experiments, each with statistically independent bit errors, to obtain 95 % confidence

intervals less than 10 % of the corresponding sample mean for all performance metrics. For additional

statistically reliability we then average the results for the three tracks.

A. ROHC Bandwidth Compression

We measure the header compression gain (i.e., reduction of header size) achieved by ROHC, which is

calculated for each track as

header gain = 1−
(

size ROHC header

size uncompressed header

)
. (19)

We found that the header compression gain is 84.7 % for all tracks for the entire range of considered error

probabilities from10−6 to 10−3. With IPv4 this implies that the header size is in the long run average

reduced from 40 to approximately 6 bytes. The compression gain for the total RTP/UDP/IP packet with

a payload of 33 bytes is calculated as

total gain = 1−
(

(6 + 33) bytes
(40 + 33) bytes

)
= 0.47.

This actual compression gain of 47% for the total IP packet is close to the maximum gain of 55%,

obtained from Equation (1). Next we address the question whether this significant reduction in consumed

bandwidth affects the voice quality.

B. Voice Quality Evaluation of ROHC

To evaluate the impact of ROHC on the voice quality we obtain the total quality both without ROHC

(denoted byD) and with ROHC (denoted byDROHC) for the objective quality metrics described in

Section IV. For ease of evaluating the voice quality improvement (gain) achieved by ROHC we define

the gain metrics in decibel (dB) in Table VII. Positive gains indicate an improved voice quality while

TABLE VII

GAIN DEFINITIONS FOR DIFFERENT METRICS.

metric gain [dB]
SNR DROHC −D
segm. SNR DROHC −D
inv. lin. spectral dist. 20 · log (DROHC/D)
unw. delta spectral dist. 20 · log (D/DROHC)
RMS distance D −DROHC
log area ratio D −DROHC
energy ratio 10 · log (D/DROHC)4

log likelihood D −DROHC
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negative gains indicate a deteriorated voice quality. Note from Table III that the SNR and the inverse linear

spectral distance have positive correlations with the subjective voice quality, i.e.,DROHC ≥ D indicates

a higher voice quality. All other metrics have a negative correlation with the subjective voice quality,

thusDROHC ≤ D indicates an improved voice quality. For metrics that involve a logarithm (i.e., SNR,

segmental SNR, RMS distance, log area ratio, log likelihood) we define the gain in dB as the difference

of the metric values. For the inverse linear spectral distance and the unweighted delta spectral distance

(which do not employ a logarithm) we use the standard dB formula to obtain the dB-gain. For the energy

ratio we use10 as multiplicative factor (and a power of4 to compensate for the power of1
4 in the metric

definition) in the gain definition to make it comparable to the closely related log likelihood. We note that

we adopt these dB-gain definitions to facilitate the comparison of the results of the different metrics and

also note that other definitions are possible.

1) Voice Quality Gain Results:In Figures 8, 9, and 10, we plot the gain (in dB) as a function of the

logarithm with base10 of the bit error probability on the wireless link. We observe that all metrics indicate

an increasing positive gain with larger error probabilities. As an exception, the gain for the traditional

SNR decreases for bit error probabilities above10−3.8. Because of the unequal weighing of soft and loud

frames, the traditional SNR reveals here its worse granularity. The SNR measures indicate a gain between

two and three decibels for link error probabilities in the10−3.4 to 10−3 range. Similarly, the spectral

distances indicate gains between0.02 and 2 dB for link error probabilities of10−3 and the parametric

distances give gains between0.5 and1 dB.
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Overall, these results indicate that the voice quality does not suffer from header compression. On the

contrary, it is improved, especially for large bit error probabilities on the wireless link. Note that these

gain values in dB represent the improvement in terms of objective voice quality and not in terms of user

perception.

In order to asses the impact on the user perception we now investigate the improvements on the subjective

5 point MOS scale (see Table II). We transform the values of the cepstral distance to the predicted mean

opinion score (MOS), using the mapping verified in [21]. LetDcep devote the voice quality calculated by

the cepstral distance. The MOS value is given by

MOS = 3.56− 0.8 ·Dcep + 0.04 ·D2
cep. (20)

We note that the absolute MOS values obtained with this mapping need to be interpreted with caution,

however, the relative difference in the MOS between two differently processed versions of the voice file

is meaningful [22]. Hence, we define the MOS gain for ROHC as

MOSgain = MOSwROHC −MOSw/oROHC . (21)

As shown in Figure 11, the predicted gain for ROHC in terms of the MOS increases roughly exponentially

with increasing error probability and reaches 0.26 for error probabilities of10−3.

2) Relationship between Quality Metrics:Generally, in objective voice quality evaluation it is advisable

to consider a variety of metrics since each individual metric (including our key metric, the cepstral distance)

has been evaluated for a limited set of distortions, see Table III. We therefore examine now the correlations
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TABLE VIII

L INEAR MAPPINGS OF OTHERLPC BASED METRICSD TO THE CEPSTRAL DISTANCEDcep. THE SYMBOLS ARE USED IN THE

SCATTER PLOTFIGURE 12.

Metric Mapping function Symbol
inv. lin. spectral dist. Dcep = −5281.818D + 105.982 ♦
unw. delta form Dcep = 17.6542D + 0.37997 5
RMS spectral dist. Dcep = 12.8911D + 0.4383 4
log area ratio Dcep = 0.46107D + 0.23373 ◦
energy ratio Dcep = 8.1716D − 7.404 �
likelihood Dcep = 0.2867D + 0.7428 ×

between the total objective qualityDcep obtained with the cepstral distance and the corresponding quality

D obtained with the other individual LPC analysis based metrics. We examine these correlations by means

of a scatter plot, which is generated as follows. We express the qualitiesD of the other LPC based metrics

as a linear function of the cepstral distance qualityDcep. We determine the slope and offset of these linear

functions by considering theD andDcep obtained for the bit error probabilities of10−6 and10−3 without

ROHC. The resulting linear mappings are reported in Table VIII. Next, we plot theDcep obtained by these

linear mappings as a function of the actual measuredDcep, resulting in the scatter plot in Figure 12. In the

plot the filled (shaded) symbols correspond to the qualities with ROHC. The unfilled symbols correspond

to the qualities without ROHC. We observe that the points are fairly closely scattered around a straight

line with slope one. This indicates that there is a high correlation between the total qualitiesD obtained

with the considered LPC based metrics, and the total qualityDcep obtained with the cepstral distance.

C. Delay Jitter Results

The voice quality metrics considered in the preceding section do not capture the signal delays. Therefore,

we investigate the delay, or more precisely, the delay variation (jitter) separately in this section. Recall

that we employ our SCC algorithm to perform delay corrections to the received (distorted) voice signal

before evaluating the voice quality metrics. The amount of these delay corrections gives the delay jitter

within the voice signal.

We examine both the delay jitter histogram and the standard deviation of the delay jitter. Figure 13

shows a typical histogram of delay jitter for the bit error probability10−3. Each bar represents a delay

jitter range of 5 msec. (The bars of ROHC are slightly thinner for graphical reasons.) Figure 14 depicts

the ROHC gain for jitter (i.e., reduction in delay standard variation). For the bit error probabilities10−3 to

10−3.4 there is a gain between 0 and 10 msec for the average of all tracks. For the other error probabilities

there is a loss of around 5 msec. Track 54 is mainly responsible for the loss, for all other tracks ROHC

mostly causes a gain. Overall, our results indicate that ROHC does not significantly deteriorate the delay

jitter. Note that — in contrast to the widely studied packet delay jitter with ROHC — throughout this

section we have considered the delay jitter in the received voice signal, which is closer related to the

user’s perception.

VII. C ONCLUSIONS

In this paper we have provided a tutorial on an evaluating methodology for transmitting voice with robust

header compression over a wireless link. Our methodology employs elementary objective voice quality



18

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

m
ap

pe
d 

L
PC

 b
as

ed
 m

et
ri

cs

actual cepstral distance D_cep

-3

-3.2

-3.4

-3.6

-3r

-3.2r

-3.4r

Fig. 12

SCATTER PLOT OF CEPSTRAL DISTANCE OBTAINED FROM LINEAR MAPPINGS OF OTHERLPC BASED METRICS AS A

FUNCTION OF ACTUAL CEPSTRAL DISTANCE.

metrics which predict the subjective voice quality with good reliability. In addition, our methodology

employs a segmental cross correlation (SCC) algorithm to synchronize the received (distorted) voice signal

with the original (reference) signal. This synchronization makes the elementary objective voice quality

metrics robust and usable for the evaluation of modern packet voice communication systems. We note that

both elementary and psycho-acoustic voice quality metrics do generally not include synchronization and

are therefore not directly applicable to packet voice. The main innovation of PESQ [15] [16] over previous

perceptual metrics is the synchronization of the voice signals. By combining the SCC synchronization

with elementary objective voice quality metrics we provide an alternative evaluation methodology for

packet voice quality. Our tutorial makes the objective voice quality metrics and the SCC algorithm readily

accessible and employable by networking researchers to evaluate similar voice communication systems.

Our evaluations of RObust Header Compression (ROHC) indicate that with ROHC the header size is

reduced by approximately 85%, which for the considered GSM encoded voice with 33 byte GSM frames

cuts the total bandwidth required for the voice transmission almost in half. (This reduction of the total

bandwidth is expected to be even larger for lower bit rate encoders with smaller voice frames.) Our

extensive voice quality evaluations, which employ the presented objective voice quality metrics indicate
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that this enormous reduction in used bandwidth does not deteriorate the voice quality. On the contrary,

the voice quality is improved by ROHC. All of the considered parametric and spectral distances indicate

improvements in the objective voice quality. In addition, the cepstral distance predicts a subjective quality

improvement of 0.26 on the 5-point Mean Opinion Score (MOS) for a wireless bit error probability of

10−3. Our phase timing measurements indicate that ROHC does not significantly deteriorate the delay

jitter in the voice signal. One explanation for the improved voice quality is that the smaller packets with

ROHC are more resistant against wireless link errors. Overall, we note that even if the voice quality

improvements with ROHC are moderate and barely perceivable in many practical settings (with ambient

noise), the compression gain of ROHC promises remarkable benefit for wireless service providers. The

number of 3rd generation mobile cell phone users could nearly be doubled by employing ROHC without

allocating more link bandwidth.
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APPENDIX

APPENDIX A: W INDOW FUNCTION

As detailed in the following appendices, the considered objective quality metrics rely on autocorre-

lations in the speech signal. For such autocorrelation based metrics it is generally beneficial to avoid

sharp discontinuities in the time domain by multiplying the voice frames with a window function. Such

windowinggenerally reduces the prediction error. We use anM -point Hamming window defined by

w(m) = 0.54− 0.46 · cos
2πm
M − 1

, m = 1, . . . ,M (22)

and illustrated in Figure 15. The windowed voice signal is obtained by

xn,d/φ(m) = xd/φ(m+ (n− 1)M) · w(m), (23)

wherexd/φ(·) denotes the “unwindowed” and “unframed” voice signal. The “framed” and “windowed”

signalxn,d/φ(m) is used for all the calculations detailed in the following appendices. (We note that only

the SNR metrics defined in (5) and (6) use the “unwindowed” but “framed” voice signal.)
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APPENDIX B: L INEAR PREDICTIVE CODING (LPC) ANALYSIS

The spectral and parametric distances are based on alinear predictive coding(LPC) analysis, which

gives the feedback coefficientsa(i). The coefficientsa(i) allow the prediction of a speech sampley(m)
by a linear, weighted sum of itsp previous values. Thepredictedspeech samplêy(m) is given as

ŷ(m) =
p∑
i=1

a(i) · y(m− i), (24)

wherep is called the LPCmodel order. Figure 16 illustrates the LPC model, a recursive digital filter with

the inpute(m) and the outputy(m). The relationship between output and input is given by

y(m) = e(m) +
p∑
i=1

a(i) · y(m− i), (25)
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wheree(m) is called theprediction error. In order to approximate the speech sampley(m) by thepredicted

sampleŷ(m), the LPC analysis minimizes the mean squared errore(m):

min
M∑
m=1

e2(m). (26)

From (26), a linear system of equations is derived. This system can be solved by the so-calledLevinson-

Durbin recursion (LDR). With the help of the LDR, thep feedback coefficientsa(i) for each framen are

computed by the following set of equations. LetRn(k) denote a set of autocorrelation functions, which

can be calculated for the distorted or the undistorted signal:

Rn,d/φ(k) =
∑
∀m

xn,d/φ(m) · xn,d/φ(m+ k), for 0 ≤ k ≤ p. (27)

From now on, the distinctiond/φ is left out to simplify the notation. The feedback coefficients refer to

either the distorted or the undistorted signal. The principle of calculating the feedback coefficients of an

LPC model with the orderp is to calculate the coefficients for all lower model orders. Without loss of

generality we consider the orderp = 10, which is typically used for voice quality evaluations. We define

a(n)(i) to be theith feedback coefficient of an LPC model with the ordern. For i = n, the coefficients

a(n)(n) are calculated as

a(n)(n) =
Rn(n)−

∑n−1
i=1 a

(n−1)(i) ·Rn(n− i)
E(n− 1)

〈=: −K(n)〉 (28)

with

E(n) = {1− [a(n)(n)]2} · E(n− 1), n = [0, . . . , 9] (29)

and the initial conditions

E(0) = Rn(0), a(1)(1) =
Rn(1)
Rn(0)

.

The negative coefficientsa(n)(n) equal the so-called Parcor coefficientsK(n), in particularlyK(n) =
−a(n)(n), which are used for calculating the log area ratio metric. If the coefficient numberi does not

equal the model ordern (i 6= n), the feedback coefficients are given by

a(n)(i) = a(n−1)(i)− a(n)(n) · a(n−1)(n− i), n > i. (30)

When the desired model orderp (= 10) is obtained, the feedback coefficients are given by

a(i) = a(p)(i). (31)

We have listed a set of formulas to compute the feedback coefficients. As many of these formulas are

recursive, the question of a possible computation order concerning the coefficients has to be answered.

Based on (28), (29), and (30), we developed the following computation scheme, which can be used for

the implementation:

a(1)(1)
a(2)(2) a(2)(1)
a(3)(3) a(3)(2) a(3)(1)

...
...

...
a(p)(p) a(p)(p− 1) . . . a(p)(1)

(32)
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This scheme describes the computation order of the coefficientsa(n)(i). The calculation has to be per-

formed in the ordera(1)(1), a(2)(2), a(2)(1), . . . , a(p)(1). The last line reflects the actual feedback coeffi-

cients with the model orderp.

APPENDIX C: SPECTRAL MAGNITUDE

Let G(n, d/φ) denote the gain factor

G(n, d/φ) =

[
Rn,d/φ(0)−

10∑
k=1

an,d/φ(k) ·Rn,d/φ(k)

]1/2

, (33)

where Rn(k) is given by (27). The spectral distance measures all contain a spectral, frame related

magnitude

Vd/φ(n, l) =

∣∣∣∣∣ G(n, d/φ)

1−
∑10

k=1 an,d/φ(k) · e−jk
πl

128

∣∣∣∣∣ . (34)

Equations (33) and (34) assume a model order of10. The gain factor is typically set to one, as the overall

level does not influence the perception [18]. The ten feedback coefficientsa(k) are calculated by the LPC

analysis.

APPENDIX D: AUTOCORRELATION MATRIX R AND LPC VECTOR~a

Let Rφ(n) denote theautocorrelationmatrix

Rφ(n) =


Rn,φ(0) Rn,φ(1) . . . Rn,φ(10)
Rn,φ(1) Rn,φ(0) . . . Rn,φ(9)

...
...

...
...

Rn,φ(10) Rn,φ(9) . . . Rn,φ(0)

 (35)

and~ad/φ(n) devote the LPC vector

~ad/φ(n) =


1

−an,d/φ(1)
−an,d/φ(2)

...
−an,d/φ(10)

 . (36)

In (35),Rn,φ(k) is defined by (27). In (36),an,d/φ(k) are the LPC coefficients and are derived from (31).

APPENDIX E: CEPSTRALCOEFFICIENTS

The LPC–derived cepstral coefficients are given by

cn,d/φ(l) = an,d/φ(l) +
1
l

l−1∑
k=1

[l − k] · cn,d/φ(l − k) · an,d/φ(k), for 2 ≤ l ≤ L (37)

with the conditions

an,d/φ(0) = 1, an,d/φ(k) = 0 for k > p

andcn,d/φ(0) = 0, cn,d/φ(1) = an,d/φ(1). (38)

L is the number of cepstral coefficients, which we choose equal to the order of the LPC analysis from

which thep predictor coefficientsa(i) are derived.
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APPENDIX F: NUMERIC VALUES OF OBJECTIVE QUALITY METRICS
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NUMERIC VALUES OF OBJECTIVE QUALITY MEASURES FOR ALL TRACKS.
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