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Abstract

Robust Header Compression (ROHC) has recently been proposed to reduce the large protocol header
overhead when transmitting voice and other continuous media over RTP/UDP/IP in wireless networks.
In this paper we evaluate the real-time transmission of GSM encoded voice with ROHC over a wireless
link. We first present a tutorial on voice quality evaluation. We introduce an evaluation methodology
that combines elementary objective voice quality metrics with a frame synchronization mechanism. The
methodology allows networking researchers to conduct effective and accurate quality evaluation of packet
voice. Besides the impact of ROHC on the voice quality we consider the impact of ROHC on the consumed
bandwidth and the delay jitter in the voice signal. We find that for a wide range of error probabilities
on the wireless link, ROHC roughly cuts the bandwidth required for the transmission of GSM encoded
voice in half. In addition, ROHC improves the voice quality compared to transmissions without ROHC,
especially for large bit error probabilities on the wireless link. The improvement redchéon the
5-point Mean Opinion Score for a bit error probability f—3.

. INTRODUCTION

While the main service of first and second generation wireless cellular systems has been voice, third
generation systems are designed to support a wide range of services, including audio and video applica-
tions. This flexibility is achieved by using the Internet protocol (IP) in conjunction with the User Datagram
Protocol (UDP) and the Real Time Protocol (RTP). One major problem with the RTP/UDP/IP protocol
architecture is the large overhead, which affects the limited bandwidth of wireless channels. A low bit rate
speech application can result in IP packets with a ratio of 30 bytes of payload to 60 bytes of overhead.
Recently, RObust Header Compression (ROHC) [1] has been proposed to compress the protocol headers
for packet transmission over a wireless link.

In this paper we provide an evaluation methodology and performance results for the real-time trans-
mission of voice with ROHC over a wireless link. Our evaluation metrics are the compression gain
(reduction in header and total packet size), the voice quality, and the delay jitter. Importantly, we employ
a wide array of objective voice quality metrics, including both the traditional and the segmental Signal to
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Noise (SNR) ratio, spectral distance metrics, and parametric distance metrics. The considered parametric
distance metrics include the cepstral distance metric, which can be transformed into the Mean Opinion
Score (MOS), thus enabling us to quantify the effect of ROHC on the voice quality in terms of the MOS.
Our delay jitter measurements do not consider the jitter of the voice packets; instead we consider the jitter
within the voice signals, which is closer related to the subjective quality perceived by the user.
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Fig. 1
DIFFERENT PERSPECTIVES ON QUALITY INNOHCPERFORMANCE EVALUATION.

Generally, when evaluating ROHC one may distinguish between three qualities, namely the network
quality, the objective quality, and the subjective quality, as illustrated in Fifure 1. While the network
quality reflects the provider's perspective, the objective and the subjective quality reflect the customer’s
perspective. The network quality can be easily measured by network parameters, such as the packet loss
rate or the packet delay. The subjective quality is generally more meaningful than the network quality,
as it relates directly to the user perceived quality. Assessing the subjective quality, however, is very
tedious as it requires listening tests with a large number of test persons. For this reason, objective quality
measures that predict the subjective quality are typically employed in the evaluation of voice transmission
systems. In this paper we give a tutorial introduction to elementary objective voice quality metrics that
allow for computationally efficient and accurate voice quality evaluations without requiring the purchase
of specialized software.

We find in our evaluation that for a wide range of bit error probabilities on the wireless link, ROHC
reduces the protocol overhead for voice transmission with IPv4 by approximately 85%, which reduces
the bandwidth required for a GSM coded voice transmission by about 47%. On top of these bandwidth
savings, ROHC improves the voice quality. On the 5-point MOS scale the improvement increases roughly
exponentially with the bit error probability. The improvement is about 0.028 for an error probability of
10~%® and reaches 0.134 and 0.264 as the error probability increasést§ and 10~3. We also find
that ROHC slightly increases the jitter for small error probabilities and slightly reduces the jitter for large
error probabilities.

This paper is organized as follows. In the following subsection we review related work. In SEction Il
we describe the principles and integration of ROHC in the IP protocol stack. In Séction Il we describe
our evaluation methodology. In Sectipn] IV we explain how to evaluate the objective voice quality using



an array of metrics ranging from Signal to Noise (SNR) ratio based metrics to spectral and parametric
distance metrics which are based on a linear predictive coding (LPC) analysis. In §&ction V we present
our segmental cross correlation (SCC) algorithm for synchronizing the original voice stream with the

voice stream after network transport. In Sectioh VI we present our bandwidth reduction, objective voice

quality, and delay jitter results for using ROHC. In Sectjon VIl we summarize our contributions.

A. Related Work

There exists a large body of literature on the development of header compression schemes for wire-
less networks and on the evaluation of these schemes in terms of the network metrics of throughput,
packet delay, and packet jitter. This literature is comprehensively surveyéd in [2]. The impact of header
compression on the quality of the transmitted medium (e.g., voice) has received very little attention so
far. The only study in this direction that we are aware oflis [3]. [In [3] the objective speech quality
degradation (using the traditional SNR which has only a weak correlation with user perception) is studied
for Robust Checksum-based Compression (ROCCO) and the Compressed Real Time Protocol (CRTP),
which may be considered as precursors to ROHC. In contrast, in this paper we consider the state-of-the-art
ROHC compression scheme and evaluate the voice quality using an array of objective metrics that allow
accurate predictions of the subjective voice quality of hearing tests. (The impact of ROHC on the wireless
transport of video, whose quality evaluation is significantly different from the voice quality considered
here, is examined in a companion pager [4].)

As reviewed in more detail at the beginning of Sectioh 1V, objective voice quality evaluation metrics
have received significant attention over the past 20 years in the research literature of the acoustics and
signal processing community. However, to the best of our knowledge there is no succinct self-contained
tutorial available that is readily accessible and usable by the networking engineer or researcher. For this
reason we provide a tutorial on objective voice quality evaluation in Seftipn IV of this paper.

Il. OVERVIEW OF ROBUSTHEADER COMPRESSION

A multimedia stream packet composed for an IP network transmission consists of a 20 byte IP header,
an 8 byte UDP header, and a 12 byte RTP header, as shown in Figure 2. The IPv6 version requires
a 40 byte IP header, so the total header size can sum up to 60 bytes. A speech application generates
compressed data at a low bit rate of around 13 kbit/s. Considering a typical payload smaller than 40
bytes, the ratio of header size to payload results in an significant waste of link bandwidth. The ROHC
compressor replaces the RTP/UDP/IP overhead by its own, much smaller header. On the receiver side the
decompressor transforms the ROHC header into the original protocol layer headers.

In Figure[B, the different header fields of an IP packet are classified in order to show the potential of
a compression scheme.

Many IP header fields of a given data flow are static, i.e., do never change. ROHC stores the values
of these static header fields stic contexiat the decompressor. More challenging for the compression
scheme is the treatment of the changing (dynamic) fields in the IP header. ROHC uses linear functions
based on the packets’ sequence numbers to derive the values of the dynamic header fieids, see [1] for
details. The parameters characterizing these linear functions are stored and updated as fb-caltéekt
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at the decompressor. We also note that some IP header fields can be derived (inferred) from other header
fields at the decompressor and are therefore not transmitted once the static context is established.

The fundamental challenge in header compression for transmission over wireless links is to maintain the
correct context at the decompressor in the face of quite frequent bit errors in the received packets. ROHC
supports three different modes for maintaining the context in different wireless systemsidirectional
modeis designed for systems without a feedback channel from the decompressor to the compressor, i.e.,
where the decompressor can not acknowledge the correct receipt of context information. To overcome this
limitation, the compressor periodically retransmits the context information. bitieectional optimistic
modeand thebidirectional reliable modeare designed for systems with a feedback channel from the
decompressor to the compressor, i.e., where the decompressor can acknowledge the correct receipt of
context information and/or send negative acknowledgements to request the retransmission of context
information. With the bidirectional optimistic mode, bit errors in the compressed header are detected
with a 3-bit cyclic redundancy check (CRC) code. When the CRC check fails the decompressor generally
discards the affected packet and attempts to repair its context either locally or by requesting a context
update from the compressor. The reliable mode extends the optimistic mode by a more complex error
detection and correction which uses a larger number of coding bits. Our evaluation concentrates on the
optimistic mode, since it gives generally the best compression efficiency. Also, with the results of the
optimistic mode, it is possible to predict the results for the reliable mode

To assess the maximum compression gain (packet size reduction) with header compression we consider
an ideal compression scheme that reduces the header size to zero bytes. Clearly, such an ideal compression



TABLE | TABLE Il

TEST MATERIAL FOR VOICE QUALITY EVALUATION MEAN OPINION SCORE

text language speaker duration total size GSM size MOS - -
' 5 imperceptible
file [sec] [kB] [kB] 4 just perceptible but not annoyin
49wav A English female  19.15  306.45 31l6 Just percep ; ying
3 perceptible and slightly annoying

53.wav B German female 16.64 266.21 27.46 . -
54 B G | 16.79 268.72 2712 2 annoying but not objectionable

wav erman male - - : 1 very annoying and objectionable

scheme has a compression gain (i.e., reduces the packet size) by

headersize

gainmax =

(1)

With a GSM codec generating 33 byte frames, the maximum saving potenfia¥isvhen using 1Pv4,

it grows to 65% when using IPv6. As the overhead is constant, the maximum saving with compression
increases as the payload size decreases. Therefore ROHC is well suited for low bit rate voice streams,
where the header size is typically larger than the payload.

In the commonly used RTP/UDP/IP protocol suite, ROHC is installed between the network and the link
layer. In the third generation Universal Mobile Telecommunication System (UMTS), ROHC compressor
and decompressor are part of the UMTS mobile phone and the corresponding UMTS radio network
controller (RNC). (Other solutions are possible, but ROHC always resides above the link layer.) The other
Internet components do not notice the usage of a compression scheme, but the wireless service provider
can take advantage of a significant reduction of the required bandwidth, as demonstrated by our results
in Section[V]l. ROHC requires from the link layer that the packets are sent in a strictly sequential order.
Also the packets are not allowed to contain routing information (single hop restriction).

ROHC supports three different modes in order to adapt to different requirements of reliability and
channel capacity. Thenidirectional modas the least efficient mode as there is no feedback channel from
the decompressor to the compressor. To ensure a correct context at the decompressor side, the compressor
periodically has to sent context information. Théalirectional optimistic modeand the bidirectional
reliable modeuse feedback information sent from the decompressor to the compressor. The feedback
allows the compressor to respond to successful or unsuccessful transmissions. The reliable mode extends

headersize + payload’

the optimistic mode by a 7-bit error correction scheme. Our evaluation concentrates on the optimistic
mode, since it gives generally the best compression efficiency. Also, with the results of the optimistic
mode, it is possible to predict the results for the reliable mode.

[11. EVALUATION METHODOLOGY

The ROHC measurements were conducted on a testbed consisting of two Linux machines. The Linux
kernels had been enhanced by an ROHC implementation (provided by the acticom GmbH, www.acticom.de).
We used three different voice files (track 49, track 53, and track 54) obtained from the European
Broadcasting UnionL[5], as shown in Taljje I.

The files, given in the wave file mono format, are first down sampled to 8 kHz and then transferred to
the communication system shown in Fig@ife 4. On the sender’s side the wave file is GSM encoded (using
the encoderi]6]). The coded file consisting of 33 byte GSM frames, is passed to the RTP/UDP/IP protocol



stack. (The wave file header (44 bytes) is not part of the transmission, because the GSM encoder expects
raw audio data.) The RTP/UDP/IP packet finally arrives at the ROHC and link layers. The two Linux
machines are connected by an Ethernet network. Recent channel characterizationistudies [7] have revealed
that uncorrelated bit errors give a good approximation of the error process in 3G networks. Consequently,
we simulate uncorrelated bit errors on the link layer. We use nine different bit error probabilities ranging
from 10~ to 10~3. Figure[5 illustrates how the original and the transferred (and possibly distorted) voice
files are employed in our quality evaluation. As the ROHC is optional, the quality evaluation is obtained

by a comparison of transmissions with and without ROHC. This comparison answers the question whether
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the voice quality is deteriorated or improved by using ROHC.

IV. VOICE QUALITY EVALUATION METRICS

Expensive and time consuming speech perception tests with human listeners as detdiled in [8] are
required to reliably obtain the subjective voice quality achieved by a communication system. The subjective
voice quality is typically given on the 5-point Mean Opinion Score (MOS) scale summarized in[Table II.

To avoid the expense and effort required for subjective voice quality evaluation, significant effort has been
devoted to developing objective, computer based metrics that predict the results of a subjective evaluation.

Generally, there are three classes of objective voice quality evaluation metrics, the network parameter
based metrics, the psycho-acoustic metrics, and the elementary metrics. The parameter based metrics do
not consider the actual voice signal. Instead, these metrics sum impairment factors that characterize the
individual components of the communication system. The packet loss and delay in a packet-voice system,
for instance, are translated into impairment factors according to provisional translation tables in the ITU-
E—model [9], which is one recent proposal for a parameter based metric. Parameter based metrics, such



TABLE 11l

CORRELATIONS BETWEEN OBJECTIVE VOICE QUALITY

METRICS AND SUBJECTIVE VOICE QUALITY THE DISTORTION

TABLE IV

DISTORTION TYPES FOR THE MEASURED CORRELATIONS
THE DISTORTION TYPES INDEXED BY1—4 ARE FROM [[8].

Index | Distortion
TYPES(INDEXED BY THE FOOTNOTE MARKERS1—8) ARE 1 waveform coders: 8 types
GIVEN IN TABLE M4 2 additive— and narrow-band noise
3 coding distortions, controlled distortions,
Objective Metric Correlation and narrow-band distortions: 23 types
(traditional) SNR +0.24"/ +0.31% 4 waveform coders and controlled
segmental SNR +0.77"/ 4 0.782 distortions in the time and
inverse linear unweighted distance  +0.63%/ + 0.48% frequency domain, 18 types
unweighted delta form —0.61%/ — 0.51° 5 | cellular phone: [19]
log root mean square (RMS) &) 6 | cellular phone:([20]
Log Area Ratio —0.62%/ — 0.65 7 coding and other non-linear
Energy Ratio [177] ~0.59°/ — 0.61* distortions: [21]
og lkeliood [17] 049/ 048 o | naise masking, band pass fiterng
H 7 8 9 ’ ’
cepstral distance 0.96"/ —0.95°/ — 0.93 echo. and peak clipping™[22]
10 theoretical approachi-{23]

as the E—-model hold promise for predicting the subjective voice quality [10] but still require extensive
refinements and verifications]11].

The psycho-acoustic metrics transform the voice signals to a reduced representation to retain only the
perceptually significant aspects. These metrics aim to predict the subjective quality over a wide range of
voice signal distortions, allowing for the development as well as the evaluation of non-waveform preserving
speech coding algorithms. These coding algorithms perform waveform distortions that are perceptually
not significant. Various complex metrics have been developed and refined over the last decade. These
include the Bark spectral distancel[12], the measuring normalizing blocks (MNB) technique[13] [14],
and the PESQ measure[15]16], which was recently standardized by ITU-T as recommendation P.862.

Elementary objective voice quality metrics rely on low-complexity signal processing techniques to
predict the subjective voice quality. The elementary metrics have generally smaller correlations with
the subjective voice quality than the highly complex psycho-acoustic metrics and do not provide the
perception modeling that is needed for psycho-acoustic coder algorithm development. The elementary
metrics, however, do represent a good engineering trade-off for networking researchers in that they allow
for fairly detailed conclusions about the voice quality while having low computational complexity. We
also note that in our evaluation methodology, as illustrated in Figure 5, we focus on system modification
in the networking domain (e.g., the introduction of ROHC). Both, the unmodified system (without ROHC)
and the modified system (with ROHC) employ the same voice codec and thus experience approximately
the same voice codec distortions. Our evaluation is focused on the impact of the modification in the
networking domain on the voice quality (and is not designed to evaluate voice codec distortions).

We have selected the elementary metrics listed in Table Il for our evaluations. The reliability of objective
voice quality metrics is usually verified by a correlation analysis between the calculated objective metric
and subjective hearing tests among a distorted data base [Table 11l gives the distortion types that the various
objective metrics have been examined for and the resulting correlations to subjective hearing tests. The
larger the magnitude of the correlation, the better the prediction of the subjective voice quality. We note



that the traditional SNR has a poor correlation performance. However, we include it because it is often
considered as a purely objective quality metric. The RMS spectral distance is included becduse in [23],
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COVER DIFFERENT TYPES OF DISTORTIONS

it is shown that it is a very meaningful measure for speech perception, as it can be physically interpreted
and efficiently computed. We note that the cepstral distance achieves the best correlation performance for
its respective distortion types. In addition to this good correlation performance, the cepstral distance has
the distinctive property that its values can be transformed to the predicted mean opinion score (MOS)
by a publicly available mapping. (We note that mappings from other objective metrics to a subjective
score are generally possible, however, we are not aware of any such mapping being publicly available.)
As illustrated in Figurd]6, many metrics use the same coefficients and are similarly calculated. However,
their performance differs among different types of distortions, as verified in [14], [18], [19]-[22].

We close this general overview of voice quality evaluation metrics by noting that we have chosen the
elementary metrics in Tablg]lll as they represent a sensible engineering approach for our networking
study. The chosen elementary metrics have good correlations with the subjective voice quality and thus
allow for meaningful conclusions about the voice quality. At the same time the chosen metrics are
computationally efficient and do not require costly proprietary software (in fact we make our evaluation
software source code publicly available: http://www.eas.asu.edu/"mre). In order to cover a reasonably
wide range of distortion types we selected a set of elementary metrics (se€ Table 1), which as we shall
demonstrate are highly correlated to the cepstral distance (and thus to the MOS) for the considered wireless
voice transmission. To synchronize the received voice stream after packet based transport we developed
a low complexity, yet effective segmental cross correlation (SCC) algorithm, see SgLtion V.



TABLE V
NOTATION OF OBJECTIVE MEASURES

n frame index
N total number of frames in voice file
m sample index
M number of samples in a frame;
M = constant = 160
Zn,4(m) amplitude of samplen in framen
of the undistorted signal
Tn,a(m) amplitude of samplen in framen
of the distorted signal
F(n) distortion index for framen
D total quality of file calculated by a metric

A. Notation

For the calculation of the objective quality metrics a given uncompressed voice signal is broken into
frames of 20 msec duration. These 20 msec frames are introduced for the voice quality evaluation in
accordance with the human voice recognition. Bedenote the total number of frames in a given voice
file. Let M denote the total number of samples in a given framen = 1,..., N. (Note that with a
sample rate of 8 KHz a 20 msec frame contalds= 160 samples, each 16 bits worth of uncompressed
voice data. These 320 bytes of voice data are typically compressed into one 33 byte GSM frame.) Let
m, m = 1,..., M, index the individual samples within a given frame. Throughout we denoter
the undistorted signal and for the distorted signal (after network transport). Lets(m) denote the
amplitude of samplen in framen of the undistorted voice signal, and lej, ;(m) refer to the distorted
sample. The signal energy(n) and the noise energy (n) of framen are given by

M
S(n) =Y ap 4(m) (2)
m=1
and u
N(n) = [xnalm) — angs(m)]?. (3)
m=1

Each metric gives a distortion indeX(n) for a given framen. The total qualityD of a given distorted
voice file with respect to the corresponding undistorted file is typically obtained by averaging the individual
distortion indices:

1 N
D:N;F(n). (4)

A slightly more complex approach may weigh the distortion indices of the individual frames by the
corresponding signal energies, but this weighting has typically negligible impact on the total quality.
Equation [#) is only used with the spectral and parametric measures, because the SNR metrics give
directly the total quality. Tabl€]V summarizes the notation of our objective measures.

B. SNR Measures

The traditional SNR and thesegmental (short-time or frame8NR are given by

N
. S(n
Dirag = 10 - logyg M 5)

A N(n)
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and N
S(n
Dseg =10- loglo Z ]\7((77‘)) (6)
n=1

Whereas the segmental SNR is based on a frame by frame calculation, the classical SNR is calculated
across the entire sequence Mfframes. As a result, the classical SNR aggregates the signal energy in
the entire file and relates this aggregate signal energy to the aggregate noise energy. In contrast, the
segmental SNR relates the signal energy of each individual frame to the noise energy of the frame. This
finer granularity relates more meaningfully to the perception of the voice file.

C. Spectral Distances

The spectral distance metrics are based on the so-cglectral magnitudé’ (n, ), which is provided
in Appendix C. Based on the spectral magnitude, the frame distortion indices for the inverse linear
unweighted distance, the unweighted delta form, and the log root-mean-square distance are given by

= ] R
Fino ) = [EZE Ve ) ] ’ ")
1 L—1 1/q
Fy(n) = ZZ|V¢(n,z>5—vd<n,l>5|‘I] : )
=0
and
15 Vo (n,1)]?

1=0
where L is usually set tol28. In [18], the constantp = 8, ¢ = 1, andj = 0.2 have been heuristically
verified to achieve good performance.

D. Parametric Distances

Parametric distances use transformations of the linear predictive coding (LPC) coefficients, which are
presented in Appendix B. We consider three classes of parametric distance measures,

1) thelog area ratiomeasure,

2) theenergy ratidlog likelihood measure, and

3) the LPC cepstral distance measure,
which are defined in[18]. The first two classes are evaluated'in [18] while the third class is evaluated in
[21], [22], [14]. The log area ratio is more efficient than a spectral distance measure, because it requires
a lower computation time and gives a comparable correlation to the spectral distances.

The energy ratio/log likelihood measures are computationally even less demanding, but give lower
correlations. The log likelihood measure was one of the first objective metrics to measure the voice
guality. As these measures are strongly related to the Itakura likelihood ratio distance méasure [17],
Figure[6 categorizes this class by the Itakura core.

Kitawaki et al. [Z1] compared elementary objective speech quality measures for voiceband codecs. The
cepstral distance had the best correspondence to the mean opinion score among all objective measures
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studied. These results are confirmed by Wu and Fois [22], who estimated a correlation of 0.926 for the
LPC cepstral distance measure with the mean opinion score. This correlation performance has been further
verified for waveform preserving codecs and for the MNRU, which is one of the most common reference
conditions for subjective and objective voice quality assessments, as part of the recent study by Voran [14].
We use the results of[21] to predict the mean opinion score from the cepstral distance.

1) Log Area Ratio MeasureFrom the LPC analysis, th&" Parcor coefficient Kg/4(n,1) for the
distorted/undistorted frame is calculated, as given i (28) in Appendix B. Lé&i?(n,[) denote thearea

ratio function:

A l) = . 10
The log area ratiomeasure is given by
10 1/p
1 ARd(n, l) P
F =4 — 201 — 11
log (1) {10 ; 010810 4R (n0) ’ (1)

where the constamt = 1 achieves a good performancel[18].

2) Energy Ratio and Log Likelihood Measurket R, (n) denote the autocorrelation matrix of frame
n, given in (35), andiy/,(n) denote a vector of all LPC coefficients, given [n](36). The ctire) of the
second class of parametric distance measures is given by

Hny = 30 Ro(n) - Gy(m)

dy(n) - Ry(n) - dg(n)

(12)

The energy ratiois calculated by
Fen(n) = [I(n)|, (13)

where the best correspondence to subjective quality was obtainéd=f@x.5. Thelog likelihood measure
is given by
Flige(n) = 10 - logyo{1(n)}. (14)

3) Cepstral Distance:The cepstral distance measure calculates the difference in the shape of the
original and the distorted spectrum. It is based on LPC—derived cepstral coeffigigni¢/), see Appendix
E. The cepstral distance is defined inl[21] as
0 L 1
Feep(n) = m 2;[%,@5(0 — cpa(l)] ) (15)
where L is the number of cepstral coefficients, which we choose equal to the order of the LPC analysis
from which the predictor coefficients(:) are derived.

V. SEGMENTAL CROSSCORRELATION ALGORITHM (SCC)

We transfer voice over a communication system. Thereby, voice frames(indye completely lost,
(ii) experience varying delays, @ii:) suffer voice signal distortions due to bit errors. The objective
voice quality is based on a comparison between the received (distorted) and the original (reference) voice
streams, which need to be synchronized for the comparison. There are generally two types of approaches
to synchronize the streamg:) packet based approaches, dng voice signal based approaches. Packet
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based approaches employ timestamps and sequence numbers (e.g., using RTP) to detect lost packets and
varying packet delays and compensate for these effects by replacing lost packets, see for instance [24], and
adjusting the playout time of the voice frame. Voice signal based approaches, on the other hand, employ
signal correlation technigues to align frames in the distorted and reference streams, see for instance [15].
For signal based synchronization we have developed the segmental cross correlation (SCC) algorithm,
which we outline in this section and employ in our measurements reported in Section VI. We note that
the voice quality evaluation methodology presented in the previous section can be employed both in
conjunction with packet based synchronization and signal based synchronization.

For the synchronization the reference file is divided into consecutive synchronization franiés of
samples each. The goal of the synchronization is to divide the distorted file into synchronization frames
such that a frame in the distorted file matches well with the corresponding frame in the reference file.
More formally, letx,, 4(u), v = 1,...,U, denote the sample values in synchronization framm the
reference file. Letr,4(-) denote the sample values in the (“unframed”) distorted file. The algorithm is
based on the normalized segmental cross correlation function

S [Tuw(w) = Fug) - [(walu+ (w = DU +7) — Tg(w, 7)]
VI e0s() — 2 g2y S fealu + (w - DU —7) = 2q(w, 7)]?

SCCy(1) = , (16)

where we denote U
1
Tg(w,7) = i Zxd(u + (w—=1)U + 7). 17)

u=1
For the first framev = 1 in a file the cross correlation is initially evaluated for a search ranger < R.
The displacement between the frame in the reference file and the distorted file is tentatively estimated as
the displacement that attains the maximum correlation, i.e.,

Tmax (W) = arg _pex SCCy(T). (18)

If this maximum cross correlation is larger than a threshold then the displacement estimate (match) is
accepted, otherwise the search range is increased. If an acceptable match is not found for the increased
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TABLE VI
PARAMETERS OF THE SEGMENTAL CROSS CORRELATION ALGORITHM

threshold value for a sufficient correlationB = 0.3

number of samples for one frame U = 4000

range of search area R = 200 samples
range of augmented search area R’ = 4000 samples

search range, then the synchronization fails for this distorted file (replication of the experiment). Such a
failure is usually due to failures in the measurement set-up. For the subsequent frame$ 2, the

cross correlation is initially evaluated for the search rangg(w — 1) — R < 7 < Tax(w — 1) + R,

i.e., the search range is adaptively shifted according to the displacement of the preceding fraine

The parameters synchronization frame lengthinitial search rangek (and policy for increasing the
search range), and acceptance threshold represent trade-offs between computational effort and likelihood
of successful synchronization (see Taplé VI). A successful synchronization is determined by a sufficient
correlation value i.e., a sufficient mean value of all SCC frame correlations (this value is calculated by
our evaluation software, see source file AudioMeter.cpp, output file quality.dat, variable “correlation”) of a
synchronized voice file. Visual comparisons of the synchronized voice file and the reference file revealed
that a correlation value, which is significantly larger than the acceptance thresholdBjalndicates a
successful synchronization, thus allowing a meaningful evaluation by the elementary voice quality metrics.
For the experiments reported in the following two sections we have typically successfully synchronized
the voice files of 94 % of the experiments. The remaining 6% of the experiments did not give valid
voice files for synchronization due to problems with the measurement set-up, such as operating system
problems and hardware failures. As detailed shortly, many independent replications are conducted for each
experiment to obtain statistical confidence levels on all results.

We note that the computation time of the SCC algorithm can be reduced by using the well known Fast
Fourier Transform (FFT) algorithm. Due to space constraints we only roughly describe its application
for time synchronization and refer the interested readef fo [25] for details. The SCC algorithm is based
on a cross correlation in the time domain. The reference sigpal(-) and the distorted signat,(-)
are transformed to the frequency domain using the FFT algoritipik) = FFT [z, ()] and Xq4(k) =
FFT[z4(-)]. In the frequency domain the component-wise prodiié) = X, (k)-X4(k) is calculated and
retransformed to the time domain using the inverse FFT algorithm. The result is equivasfitio(T),
in (L8), thus allowing directly for the determination af,..

We finally note that PESQ, which requires the purchase of proprietary software (with a cost on
the order of $ 10.000, see http://www.pesq.org), performs highly complex algorithms in the time and
frequency domain[l15] and gives generally better synchronization performance than our low complexity
SCC algorithm (for which we make the source code publicly available: http://www.eas.asu.edu/"mre).
However, the SCC algorithm does allow for meaningful delay jitter measurements in the received voice
signal, as presented in Sectipn I-C and synchronizes the voice signals to allow for the objective voice
quality evaluations presented in Sectjon VI-B.
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VI. PERFORMANCERESULTS FORROHC

In this section we give an overview of our evaluations of voice transmission with ROHC. We first
evaluate the compression performance (bandwidth reduction) achieved by ROHC. Next, we employ the
objective voice quality metrics explained in Sect[on IV to assess the impact of ROHC on the voice quality.
Finally, we evaluate the impact of ROHC on the jitter in the voice signal.

Throughout this evaluation study we consider the three voice tracks (files) given i Table I. For each track
we conduct many experiments, each with statistically independent bit errors, to obtain 95 % confidence
intervals less than 10 % of the corresponding sample mean for all performance metrics. For additional
statistically reliability we then average the results for the three tracks.

A. ROHC Bandwidth Compression

We measure the header compression gain (i.e., reduction of header size) achieved by ROHC, which is
calculated for each track as

header gain =1 — < size ROHC' header ) |

size uncompressed header (19)

We found that the header compression gain is 84.7 % for all tracks for the entire range of considered error
probabilities from10~6 to 1073, With IPv4 this implies that the header size is in the long run average
reduced from 40 to approximately 6 bytes. The compression gain for the total RTP/UDP/IP packet with

a payload of 33 bytes is calculated as

6+ 33) byt
totalgain:1—<( +33) y68>20.47.

(40 + 33) bytes

This actual compression gain of 47% for the total IP packet is close to the maximum gain of 55%,
obtained from Equatiorf](1). Next we address the question whether this significant reduction in consumed
bandwidth affects the voice quality.

B. Voice Quality Evaluation of ROHC

To evaluate the impact of ROHC on the voice quality we obtain the total quality both without ROHC
(denoted byD) and with ROHC (denoted bYrorc) for the objective quality metrics described in
Section[TVY. For ease of evaluating the voice quality improvement (gain) achieved by ROHC we define
the gain metrics in decibel (dB) in Table"VIl. Positive gains indicate an improved voice quality while

TABLE VII
GAIN DEFINITIONS FOR DIFFERENT METRICS
metric gain [dB]
SNR Dgrouc — D
segm. SNR Dronc — D

inv. lin. spectral dist. 20 - log (Drouc /D)
unw. delta spectral dist. 20 -log (D/Dronc)

RMS distance D — Dronc
log area ratio D — Dronc
energy ratio 10 - log (D/Drouc)*

log likelihood D — Dronc
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negative gains indicate a deteriorated voice quality. Note from Table Il that the SNR and the inverse linear
spectral distance have positive correlations with the subjective voice qualityDiesc > D indicates
a higher voice quality. All other metrics have a negative correlation with the subjective voice quality,
thus Dropc < D indicates an improved voice quality. For metrics that involve a logarithm (i.e., SNR,
segmental SNR, RMS distance, log area ratio, log likelihood) we define the gain in dB as the difference
of the metric values. For the inverse linear spectral distance and the unweighted delta spectral distance
(which do not employ a logarithm) we use the standard dB formula to obtain the dB-gain. For the energy
ratio we usel0 as multiplicative factor (and a power dfto compensate for the power éfin the metric
definition) in the gain definition to make it comparable to the closely related log likelihood. We note that
we adopt these dB-gain definitions to facilitate the comparison of the results of the different metrics and
also note that other definitions are possible.

1) Voice Quality Gain Resultstn Figures[B[19, and 10, we plot the gain (in dB) as a function of the
logarithm with basd 0 of the bit error probability on the wireless link. We observe that all metrics indicate
an increasing positive gain with larger error probabilities. As an exception, the gain for the traditional
SNR decreases for bit error probabilities abave 8. Because of the unequal weighing of soft and loud
frames, the traditional SNR reveals here its worse granularity. The SNR measures indicate a gain between
two and three decibels for link error probabilities in thé=>* to 1072 range. Similarly, the spectral
distances indicate gains between?2 and 2 dB for link error probabilities ofl0~3 and the parametric
distances give gains betweérb and1 dB.

2 - T T T
35 : , i inv. linear * 100 —— /
SNR —— 18 RMSdist. * 100 i
3 Ll segm.SNR ——=— - 16 unw. delta —=—— /
1.4 A
25 T S
X 28] . #
5, ,/ = 1 A
/ 0
5 15 A S, 08 ;
1 S 0.6 ;/ y
)% 0.4
05 0.2 e
R e p— 0 R
-6 55 -5 -45 4 35 -3 -6 -5.5 -5 -4.5 -4 -3.5 -3
log10 error probability log10 error probability
Fig. 8 Fig. 9
GAIN IN OBJECTIVE VOICE QUALITY WITH ROHCFORSNR GAIN IN OBJECTIVE VOICE QUALITY WITH ROHCFOR
MEASURES AS A FUNCTION OF BIT ERROR PROBABILITY SPECTRAL DISTANCES AS A FUNCTION OF BIT ERROR

PROBABILITY.
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Overall, these results indicate that the voice quality does not suffer from header compression. On the
contrary, it is improved, especially for large bit error probabilities on the wireless link. Note that these
gain values in dB represent the improvement in terms of objective voice quality and not in terms of user
perception.

In order to asses the impact on the user perception we now investigate the improvements on the subjective
5 point MOS scale (see Tabfe Il). We transform the values of the cepstral distance to the predicted mean
opinion score (MOS), using the mapping verified inl [21]. I[&t.,, devote the voice quality calculated by
the cepstral distance. The MOS value is given by

MOS = 3.56 — 0.8 - Deeyp + 0.04 - D? (20)

cep*

We note that the absolute MOS values obtained with this mapping need to be interpreted with caution,
however, the relative difference in the MOS between two differently processed versions of the voice file
is meaningful [?2]. Hence, we define the MOS gain for ROHC as

MOSgqin = MOSyronc — MOSy joroHC- (21)

As shown in Figur¢ 11, the predicted gain for ROHC in terms of the MOS increases roughly exponentially
with increasing error probability and reaches 0.26 for error probabilitie)of.

2) Relationship between Quality Metric&enerally, in objective voice quality evaluation it is advisable
to consider a variety of metrics since each individual metric (including our key metric, the cepstral distance)
has been evaluated for a limited set of distortions, see Table Ill. We therefore examine now the correlations



17

TABLE VI
LINEAR MAPPINGS OF OTHERLPC BASED METRICSD TO THE CEPSTRAL DISTANCED . THE SYMBOLS ARE USED IN THE
SCATTER PLOTFIGUREZ.

Metric Mapping function Symbol
inv. lin. spectral dist.| Dcep, = —5281.818D + 105.982 O
unw. delta form Decep = 17.6542D + 0.37997 v
RMS spectral dist. | Dcep = 12.8911D + 0.4383 A
log area ratio De¢ep = 0.46107D + 0.23373 o
energy ratio Decep = 8.1716D — 7.404 g
likelihood Deep = 0.2867D + 0.7428 X

between the total objective qualify.., obtained with the cepstral distance and the corresponding quality
D obtained with the other individual LPC analysis based metrics. We examine these correlations by means
of a scatter plot, which is generated as follows. We express the qudhtafshe other LPC based metrics

as a linear function of the cepstral distance quality,. We determine the slope and offset of these linear
functions by considering th® and D..,, obtained for the bit error probabilities @65 and10~3 without

ROHC. The resulting linear mappings are reported in Tablg VIII. Next, we plobthg obtained by these

linear mappings as a function of the actual measuvgg, resulting in the scatter plot in Figufe]12. In the

plot the filled (shaded) symbols correspond to the qualities with ROHC. The unfilled symbols correspond
to the qualities without ROHC. We observe that the points are fairly closely scattered around a straight
line with slope one. This indicates that there is a high correlation between the total qualitibgined

with the considered LPC based metrics, and the total quality, obtained with the cepstral distance.

C. Delay Jitter Results

The voice quality metrics considered in the preceding section do not capture the signal delays. Therefore,
we investigate the delay, or more precisely, the delay variation (jitter) separately in this section. Recall
that we employ our SCC algorithm to perform delay corrections to the received (distorted) voice signal
before evaluating the voice quality metrics. The amount of these delay corrections gives the delay jitter
within the voice signal.

We examine both the delay jitter histogram and the standard deviation of the delay jitter. [Figure 13
shows a typical histogram of delay jitter for the bit error probability 3. Each bar represents a delay
jitter range of 5 msec. (The bars of ROHC are slightly thinner for graphical reasons.) Figure 14 depicts
the ROHC gain for jitter (i.e., reduction in delay standard variation). For the bit error probabiliti€sto
1034 there is a gain between 0 and 10 msec for the average of all tracks. For the other error probabilities
there is a loss of around 5 msec. Track 54 is mainly responsible for the loss, for all other tracks ROHC
mostly causes a gain. Overall, our results indicate that ROHC does not significantly deteriorate the delay
jitter. Note that — in contrast to the widely studied packet delay jitter with ROHC — throughout this
section we have considered the delay jitter in the received voice signal, which is closer related to the
user’s perception.

VII. CONCLUSIONS

In this paper we have provided a tutorial on an evaluating methodology for transmitting voice with robust
header compression over a wireless link. Our methodology employs elementary objective voice quality
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metrics which predict the subjective voice quality with good reliability. In addition, our methodology
employs a segmental cross correlation (SCC) algorithm to synchronize the received (distorted) voice signal
with the original (reference) signal. This synchronization makes the elementary objective voice quality
metrics robust and usable for the evaluation of modern packet voice communication systems. We note that
both elementary and psycho-acoustic voice quality metrics do generally not include synchronization and
are therefore not directly applicable to packet voice. The main innovation of PESQTL5] [16] over previous
perceptual metrics is the synchronization of the voice signals. By combining the SCC synchronization
with elementary objective voice quality metrics we provide an alternative evaluation methodology for
packet voice quality. Our tutorial makes the objective voice quality metrics and the SCC algorithm readily
accessible and employable by networking researchers to evaluate similar voice communication systems.
Our evaluations of RObust Header Compression (ROHC) indicate that with ROHC the header size is
reduced by approximately 85%, which for the considered GSM encoded voice with 33 byte GSM frames
cuts the total bandwidth required for the voice transmission almost in half. (This reduction of the total
bandwidth is expected to be even larger for lower bit rate encoders with smaller voice frames.) Our
extensive voice quality evaluations, which employ the presented objective voice quality metrics indicate
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that this enormous reduction in used bandwidth does not deteriorate the voice quality. On the contrary,
the voice quality is improved by ROHC. All of the considered parametric and spectral distances indicate
improvements in the objective voice quality. In addition, the cepstral distance predicts a subjective quality
improvement of 0.26 on the 5-point Mean Opinion Score (MOS) for a wireless bit error probability of
103, Our phase timing measurements indicate that ROHC does not significantly deteriorate the delay
jitter in the voice signal. One explanation for the improved voice quality is that the smaller packets with
ROHC are more resistant against wireless link errors. Overall, we note that even if the voice quality
improvements with ROHC are moderate and barely perceivable in many practical settings (with ambient
noise), the compression gain of ROHC promises remarkable benefit for wireless service providers. The
number of 3rd generation mobile cell phone users could nearly be doubled by employing ROHC without
allocating more link bandwidth.
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APPENDIX
APPENDIXA: WINDOW FUNCTION

As detailed in the following appendices, the considered objective quality metrics rely on autocorre-
lations in the speech signal. For such autocorrelation based metrics it is generally beneficial to avoid
sharp discontinuities in the time domain by multiplying the voice frames with a window function. Such
windowinggenerally reduces the prediction error. We uselafpoint Hamming window defined by

2
w(m) = 0.54 — 0.46 - cos MLinl’ m=1,....M (22)

and illustrated in Figur€ 15. The windowed voice signal is obtained by
xn,d/d)(m) = xd/(b(m + (n - 1)M) : w(m), (23)

wherez,,,(-) denotes the “unwindowed” and “unframed” voice signal. The “framed” and “windowed”
signalz,, 4/4(m) is used for all the calculations detailed in the following appendices. (We note that only
the SNR metrics defined in](5) angd (6) use the “unwindowed” but “framed” voice signal.)
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APPENDIXB: LINEAR PREDICTIVE CODING (LPC) ANALYSIS

The spectral and parametric distances are based loea predictive codingLPC) analysis, which
gives the feedback coefficientg:). The coefficients:(i) allow the prediction of a speech samplén)
by a linear, weighted sum of its previous values. Theredictedspeech samplg(m) is given as

g(m) =" a(i) - y(m — i), (24)
i=1
wherep is called the LPGmodel order Figure[Ip illustrates the LPC model, a recursive digital filter with

the inpute(m) and the outpuy(m). The relationship between output and input is given by

y(m) = e(m) + Y a(i) - y(m — i), (25)
=1
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wheree(m) is called theprediction error In order to approximate the speech samyibe) by thepredicted
sampleg(m), the LPC analysis minimizes the mean squared erfor):

M
min Z e?(m). (26)
m=1

From (Z6), a linear system of equations is derived. This system can be solved by the st-ealtsdn-
Durbin recursion (LDR). With the help of the LDR, thefeedback coefficients(i) for each frame: are
computed by the following set of equations. L8} (k) denote a set of autocorrelation functions, which
can be calculated for the distorted or the undistorted signal:

and/d’(k) = Zmnyd/(ﬁ(m) : $n7d/¢(m + k), for0<k< p. (27)
vm

From now on, the distinctiod/¢ is left out to simplify the notation. The feedback coefficients refer to
either the distorted or the undistorted signal. The principle of calculating the feedback coefficients of an
LPC model with the ordep is to calculate the coefficients for all lower model orders. Without loss of
generality we consider the ordgr= 10, which is typically used for voice quality evaluations. We define
a™ (i) to be theith feedback coefficient of an LPC model with the orderFor i = n, the coefficients

a™ (n) are calculated as

Rn(n) = 2 a1 (i) - Ry(n — i)

a™(n) = “EE(n Y (=: —K(n)) (28)
with
En)={1-[a™0)]*-En-1), n=]0,...,9] (29)

and the initial conditions
Ry (1)

Rn(0)°
The negative coefficients(™ (n) equal the so-called Parcor coefficiedtgn), in particularly K (n) =

E(0) = R,(0), V(1) =

—a™(n), which are used for calculating the log area ratio metric. If the coefficient numbtlees not
equal the model ordet (i # n), the feedback coefficients are given by
a™ (@) =a™ VG —a™ () a"V(n—i), n>i (30)
When the desired model order(= 10) is obtained, the feedback coefficients are given by
a(i) = a® (i), (31)

We have listed a set of formulas to compute the feedback coefficients. As many of these formulas are
recursive, the question of a possible computation order concerning the coefficients has to be answered.
Based on[(28),[129), andi {30), we developed the following computation scheme, which can be used for
the implementation:

)
a(2) (2) a@)(l)
a®3)  a®@)  a®(1) (32)

a(p)'(p) a(l’)(];—l) a®)(1)
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This scheme describes the computation order of the coefficiéhtgi). The calculation has to be per-
formed in the order(Y(1),a®(2),a®(1),...,a® (1). The last line reflects the actual feedback coeffi-
cients with the model ordey.

APPENDIXC: SPECTRALMAGNITUDE

Let G(n,d/¢) denote the gain factor

10 1/2
G(n,d/¢) = | Ry a/6(0) — Zan,d/¢(k) : Rn,d/qf)(k)] ; (33)
pr

where R, (k) is given by [2]F). The spectral distance measures all contain a spectral, frame related
magnitude

G(n,d/9)
1= 3002 gyg(k) - e 9% |
Equations[(33) and {B4) assume a model order0ofThe gain factor is typically set to one, as the overall
level does not influence the perceptioni [18]. The ten feedback coefficiéhtsre calculated by the LPC
analysis.

Vae(n,1) = (34)

APPENDIXD: AUTOCORRELATION MATRIX R AND LPC VECTOR @

Let R4(n) denote theautocorrelationmatrix

Rns(0) Rpg(l) ... R, 4(10)
Rng(l) Rpg(0) ... Ryug4(9)
Ry(n) = : : . : (35)
Rn(10) R,(9) ... Rpg(0)
anddgy,(n) devote the LPC vector
- ) .
_an,d/¢<1)
L _an,d/¢>(10) i

In (B8), R, (k) is defined by [(27). In[(36)s,,4/4(k) are the LPC coefficients and are derived frdnj (31).

APPENDIX E: CEPSTRALCOEFFICIENTS

The LPC—derived cepstral coefficients are given by
-1

[l — k‘] . Cn,d/(ﬁ(l — k‘) . amd/(b(k‘), for 2 <I[<L (37)
k=1

Cndj¢(l) = anase(l) +

~| =

with the conditions
anyd/qg(O) = 1, anyd/qg(k) =0 for k > p
andecy, 4/4(0) =0, Cndfo(1) = Ay q/¢(1). (38)

L is the number of cepstral coefficients, which we choose equal to the order of the LPC analysis from
which thep predictor coefficientsi(i) are derived.



APPENDIX F: NUMERIC VALUES OF OBJECTIVE QUALITY METRICS
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