
Improvements on IP Header Compression
Cédric Westphal

Nokia Research Center, Mountain View, CA
cedric.westphal@nokia.com

Abstract—Due to bandwidth constraints on the wireless link in
an IP network, it is useful to compress the headers so as to max-
imize the utilization of the link. Different Header Compression
schemes have been proposed. Some make use of the similarity
in consecutive headers in a packet flow to compress these head-
ers. These are called heretime compression, as they acquire the
compression information over the time length of a flow. Another
scheme introduced recently makes use of the similarity in consec-
utive flows from or to a given mobile terminal to compress these
headers. This we call aspacecompression, as it uses information
about the distribution of flows over the destination address space.
We present here a comparison of these two classes of header com-
pression algorithm -time and space- and of a third one that com-
bines them. The combined algorithm significantly outperforms
traditional header compression algorithm. We evaluate the com-
pression scheme with respect to actual internet data traces.

Keywords: Header compression, entropy, information the-
ory, encoding, frequency distribution.

I. I NTRODUCTION

The purpose of IP header compression algorithm is to im-
prove on the ratio of the overhead versus the payload for an IP
packet. It is of tremendous importance since the increase of the
address space when shifting to IPv6 translates into an increase
of the header size. Also, the bandwidth bottleneck in the future
mobile Internet is the wireless link.

Header compression (HC) algorithms have been developed
for over a decade. Recently, we introduced a different scheme
that uses the flow history to compress IP headers [7]. The al-
gorithm uses the frequency of a flow to compress its headers,
and is denoted here as a Frequency-Based header compression
(FBHC). We recall in the next section the basic concepts of this
IP header compression scheme.

While [7] offered a mathematical model to evaluate the per-
formance of the FBHC algorithm, it was not compared to
the landmark HC algorithms such as ROHC -RFC3095 [1]-
and IPHC1 -RFC2507 [2]. We fill this gap in this document.
Namely, we focus on TCP traffic and thus on RFC2507 as our
comparison benchmark. More importantly, we present a way
of combining both traditional and new IP header compression
algorithms. We see that the combination of the two classes of
algorithms yields a significant improvement over either one of
the algorithms.

II. H EADER COMPRESSIONFRAMEWORK

First we introduce some terminology to describe Header
Compression. Denote bypi, i = 1, 2, . . . the sequence of pack-

1Even though FBHC or ROHC also are IP header compressions, we use IPHC
for RFC2507 as its title is ‘IP Header compression’

ets sent by some useru. We consider only sent packets to sim-
plify the description. Received packets can be treated in a sym-
metric fashion.

A packetpi is composed of an IP header and some data. The
IP header is composed of several fields, such as source address
(the useru’s address), destination address, ports, protocol, and
some transport protocol information.

The filter f of a packet is defined here as the IP 5-tuple
(source IP address, source port, destination IP address, destina-
tion port, protocol). The filter functionF is defined such that:
F(pi) gives the filter of the packet. Note that the definition of
filter could be extended to cover other fields of the IP header.

Internet traffic is composed of microflows, which we define
now. Assume a given time thresholdτ :

Definition II.1: A microflow mf is a sequence of packets
with the same IP 5-tuple such that two consecutive packets are
within τ units of time of each other.

IP headers in a microflow exhibit some similarities: the filter
is the same from one packet to the next. Furthermore, the pro-
tocol header is highly correlated as well2. When a microflow
crosses a bandwidth constrained link, the link layer can take
advantage of this correlation by compressing the IP header.

Definition II.2: An IP Header Compression algorithm is a
device to reduce bandwidth usage on a given link by replac-
ing the IP header by a label (or compressed header) at one end
of the link, transmitting the data with the label attached, then
replacing the label at the other end of the link by the original
(reconstructed) IP header.

HC can be described as two functions, a compressorC ap-
plying on (p1, . . . , pj) and a decompressorD applying on
(C(p1), . . . , C(pj)) such that, for packetspj crossing linkl;

size(C(pj)) < size(pj)
D (C(pj |p1, . . . , pj−1)|C(p1), . . . , C(pj−1)

)
= pj (1)

We denote byC(f) the compressed filter. Several IP Header
Compression schemes provide this functionality, mostly on
bandwidth constrained wireless links. The most common
schemes, the Van Jacobson (VJ) algorithm [6], RFC2507[2]
and the Robust Header Compression (ROHC) algorithm [1]
work on the same principles. These schemes make use of the
predictable behavior of the header sequence within one mi-
croflow. Without entering into the specific technical details, the
header is either Full Header (FH), First-Order Header (FO) or
second order header (SO).

2We do not consider similarities in the data attached to each packet in a mi-
croflow, we restrict ourselves to layer 3, IP header compression, and ignore
application layer, data compression.

• FH corresponds to the regular transmission of all the in-
formation bits that make the IP header.

• FO corresponds to the header without the constant infor-
mation (the IP 5-tuple, the constant fields in the proto-
col header...). Changing fields (sequence number, time
stamps...) are represented entirely.

• SO corresponds to the header without the constant and the
predictably incremental (so called ‘delta’) information. As
for FO, both compressor and decompressor need to ac-
quire first the information before switching to this mode.

These HC schemes can be described as acompression over
time. The knowledge required to improve the compression fac-
tor is acquired over the time length of a microflow: the de-
compressor has to learn the compression parameters before the
compressor can use a new compression state.

However, most microflows today are short lived, with small
packets [4], [5]. These connections do not give enough time
to the traditional HC engine to acquire the compression state
and reach a compressed steady state. To quote from [9]:Many
recent studies have noted that the majority of TCP flows travel-
ing over the wide area internet are very short, with mean sizes
around 10KB and median sizes less than 10KB. This implies
most of the internet traffic today is away from IPHC’s optimized
application domain.

Fig. 1. Frequency (number of occurrences) vs. Time (flow length) for TCP
applications

Definition II.3: The frequency of a microflow for a given
user is defined as the number of microflows from this user
having the same IP 5-tuple divided by the total number of mi-
croflows from this user.

In figure 1, we present the distribution of the microflows of
a group of users in a time/frequency domain. The x-axis repre-
sents the length of a connection3. We only plot TCP flows for
some IANA ‘well-known’ ports (see section IV for the mea-
surement data). Longer UDP streams would be on the right-
hand side of the graph. The y-axis represents how frequent a
connection is with respect to the other connections. The IPHC
compression schemes works better with longer connection, so
that the compression engine can acquire compression states.
This is represented by the area to the right of the graph. The
frequency-based header compression (FBHC) introduced in [7]
applies to the bulk of the microflows on the left side of the

3connection and microflow have the same meaning here

graph. In the next section, we recall the main ideas of the FBHC
algorithm.

III. FBHC A LGORITHM

We present now the FBHC algorithm as introduced in [7].
We define the compressor and the decompressor in this section.

A. Filter table

Denote byM the set of all microflows originating from user
u until time t.

Definition III.1: A filter table is a table of elements of the
form: (filter, filter count, time of first filter occurrence, filter
rate, compressed filter). The compressed filter is also called the
code word for the filterf . More precisely, each elements is of
the form:

(f, fcount, ftime, frate, c) = (f, Σp:p∈m,m∈M1{F(p)=f},

min
m∈M

(T (p) : p ∈ m andF(p) = f),
fcount

t− ftime
, C(f)).

A filter table has a finite depth,D which is the number of
entries in the table. Since the table contains bothf andC(f),
maintaining such a table provides a HC functionc = C(f), as
well as the decompression functionf = D(c). c is the com-
pression code forf , and is a function offrate andt.

To define our compression algorithm, and assuming that both
C andD have the same filter tables available to them, it suffices
to describe how this filter table evolves as a function of time.

Consider a filter tableTfreq with depthDfreq and a filter ta-
bleTrec with depthDrec. Intuitively, Tfreq is assigned the task
of keeping the information for the most frequent microflows,
andTrec for the most recent microflows.Trec is ordered in a
First-In-First-Out way: the entry on top of the table is the oldest
one whereas the on at the bottom is the latest one.

Trec andTfreq assign a mapping fromf to c, however, they
use different coding alphabets: an entry inTrec cannot have the
samec as an entry inTfreq.

B. Frequency based algorithm

The compressor maintains two tablesTfreq and Trec, one
for frequent flows, and one for recent flows. The compressor
receives a full packetp with filter f from useru at timetp.
• if F(p) = f ∈ Tfreq, that is, if thef has an entry in the

Tfreq table, then the compressor:
– replacesf with the corresponding valuec in theTfreq

table and forwards the compressed packet.
– updates the valuefcount by one.
– computes the new ratesfrate using timetp for all

entries in the table.
– reassigns the codesc based on the new frequency

frate.
• otherwise, ifTfreq is not full (has less thanDfreq entries),

then adds the entry corresponding tof in Tfreq.
• otherwise, iff ∈ Trec, that is, if the filter ofp has an entry

in theTrec table, then the compressor:

– replacesf with the corresponding valuec in theTrec

table and forwards the compressed packet.
– updates the valuefcount by one.
– computes the new ratefrate(fi) using timetp for

all entriesfi in the tableTfreq and compares it with
frate(f).

– if there exists some valuefj in Tfreq such that
frate(fj) ≤ frate(f), then adds the entry corre-
sponding tof in Tfreq, removes the entry correspond-
ing tof in Trec, and removes the entry with the lowest
frate(fi) from Tfreq.

• otherwise, ifTrec is full, that is, if it containsDrec entries,
then the compressor removes the first entry in the table
Trec, moves up all the entries so that the second becomes
first, the third second, etc. Adds the entry corresponding
to f last inTrec. Forwardsp as is.

• otherwise, adds the entry corresponding tof as the last
one inTrec, and forwardsp as is.

This defines both the compressor, and the decompressor, as
it suffices to replacep with the compressed packet, and substi-
tute c andf in the table update process described above. For
instance, if the received codec correspond to an entry inTfreq,
then replacec with itsf to recover and forward the initial packet
p, then update the frequencies, and compute the new codes.

Tfreq

update fcount;
replace

send packet

p
fwith andTrec

Tfreq

TrecTfreq

Trec
Tfreq

Trec
f j in

>frate(f)
j

TrecTfreq

replace
with ,send
packet then
update codes

f
c

from user u

Packet arrivesp

Is

in

yes no

is

in

yes no

yes no

f

f

Update
fcount;

Compute
frequency ?

?

replace

with and

send packet

= f + datap

f

c

no yes

is

frate(f)

with

Are

codes up to
 date in

?

This block diagram assumes the
andtables are filled.

dismiss

in shift
oldest entry

entries up,
add f send p

frequent
entry in

dismiss least

remove f
from and
add to

Fig. 2. Block diagram for compression/decompression algorithm

The assumption that the link is perfect ensures that both the
compressorC and the decompressorD are synchronous, and
that each side’s copies of theTfreq and theTrec are the same.
Since the compressor and the decompressor need to be updated
at the flow granularity -and not for every packet- the layer 2 or
layer 4 reliability mechanisms provide built in synchronization.
The loss of a packet will not affect FBHC. On the other hand,
the loss of the whole flow is impossible thanks to for instance
TCP mechanisms.

IV. COMPARISON WITH EXISTING IP HC

An analytical evaluation of FBHC was conducted in [7]. We
do not cover this evaluation here. Instead, we focus on a mea-
surement study conducted on the Nokia LAN in the Mountain
View campus to perform a comparison with IPHC (ROHC, the

other standardized IP header compression algorithm focuses on
IP/UDP/RTP, not TCP flows).

For the data collection, a measurement box was inserted be-
tween the router and the switch on one of the branches of the
intranet of Nokia’s campus in Mountain View. All the TCP data
flowing in and out 25 users on the branch was logged during 30
non-consecutive days between April 22nd and June 20th 2002.

A. Collected data

In this section, we consider some general quantities based on
the collected data.

FBHC keeps some flow level statistics. As stated in II.1, a
flow is a sequence of packets with the same source, destination
addresses, port numbers and such that the time between two
consecutive packets does not exceed a threshold. Typically,
IPHC considers a (default) value FMAX TIME = τ = 5s
between packets. We consider several thresholds. Whenever
comparing with IPHC, we will consider IPHC and FBHC with
the sameτ thresholds of course.

Different thresholds are considered to see the sensitivity of
the FBHC algorithm to the flow definition. IPHC depends on
the threshold as the shorter it is, the more likely it is that a flow
terminates, and that it has to be re-initiated upon resumption
of the flow. This re-establishment cost that has been studied in
another document [8].

Figure 3 depicts the dependency of the number of flows with
respect toτ . The longerτ , the less flows there are and the more
packets in a flow. At the 5s threshold used in IPHC, the average
number of packets per flow is 30. An easy way to increase
IPHC performance is to increase the value of the thresholdτ .
We show later (in Figure 6) that the gain in IPHC performance
is not too significant. However, this increases at the same time
the complexity of the flow state management. In some cellular
networks, the node that decompresses the headers can handle
several thousands to several million flows concurrently.

Fig. 3. Dependency of the number of packet vs. flow thresholdτ

1) Ports: Another issue of importance is to characterize the
traffic per application.

As we deal with per flow HC later in the document, we are
interested to see how flows vary depending on the application.
Ports that carry the largest number of flows are 23, 20 and 80.
We plot in figure 4 the number of packets per flow per applica-
tion. The application are mapped to a port, and we only picked

the IANA Well Known Ports (ports 1 to 1024) with the most
traffic (the other Well Known Ports only saw some marginal
traffic).

Fig. 4. Number of packets per flow per port

As we can see, most of the ports have around or less than
10 packets per flow, except for telnet (port 20) which has 1200
packets per flow uplink and 750 packets per flow downlink, and
for the printer spooler (port 515) which has 50 packets downlink
and 100 packets uplink.

The main conclusion we draw is that, except for port 515 and
20, the behavior of the flow is pretty similar independtly of the
application for our purpose. Ftp (port 20) and telnet (port 23)
traffic are traffic created by the network topology and the dis-
tribution of the resources over the network. This traffic is not
likely to be found on a mobile device any time soon. The print
traffic is not (yet) to be expected either. This has two conse-
quences:

1) for a short term perspective onmobile users’ behavior,
we will restrict the study to the ports that are likely to
be used widely soon: namely 80 (http), 443 (https), 143
(imap) and 110 (pop) as web browsing and email are the
two mainearlyapplications using tcp.

2) for a longer term perspective, we may assume that, as
least in the corporate world, the traffic measurement of
the mobile user will converge to mimic the current traf-
fic patterns. Thus, results on the whole data set could
be extracted. However, these results would entail many
idiosyncracies of the specific network studied.

In the sequel of this document, we focus on the shorter term
perspective, and we consider ports 80, 443, 110 and 143.

B. FBHC algorithm performance on the measured data

We study here the performance gain achieved by the FBHC
algorithm on the collected data. To do this, we run the FBHC
for each of the 25 users that were monitored. We distinguish
in between uplink traffic and downlink traffic for IPHC, as the
properties of each direction are quite different usually. How-
ever, we do not need this distinction in FBHC, as the frequency
of the downlink is comparable to that of the uplink (an uplink
flow does translate into a downlink flow for TCP traffic).

In figure 5, we plot the compression achieved for the 25
users with the FBHC algorithm, where the constant fields are
removed, the source address is reversed looked up from the

MAC layer, and the destination address is compressed using
the FBHC tables.

Fig. 5. FBHC compression achieved per user

We also extrapolated the compression achieved if the users
were using IPv6 with the same traffic patterns. Figure 5 refers
to the whole traffic seen by each user independently of the ap-
plication. The destination address is compressed on 1 to 1.4
bytes for all but 2 users (1.9 and 2.2 respectively). The mean
compression is 1.2 bytes. Recall that 1 byte is the minimal com-
pressed value per our assumption. This translates into a com-
pressed IP header between 12 and 12.4 for all but two users,
and 12.2 on average.

IPv6 performs better: the compressed addresses fit on 3 bytes
for all but these two users, (again the minimal value is 1 byte)
and the average value is about 2 bytes. This translate into an
IPv6 address encoded onto 10 bytes on average.

C. Comparison with traditional HC

In this section, we see how FBHC fares when compared with
IPHC. The figure 6 we plot is that of IPHC on the whole data
we gathered. As we said earlier, this is not very relevant to
the task at hand: the structure of the network induces elongated
flows that are not likely to be reproduced in a wireless network
at least in the short to medium term.

The IPHC performance is evaluated in a very simple manner:
the size of the packet depends on the IPHC state. The state is
changed deterministically: the number of packets needed to es-
tablish the next state is a variable parameter: we considered 2,
3 and 4 packets. 3 is the common value taken for the unidirec-
tional mode, that is 3 is the number of packets sent by the com-
pressor for the compressor to assume that the decompressor has
acquired the state. After 2, 3 or 4 FH packets, the compressor
sends FO compressed headers. Then, after the same number of
FO packets, the compressor moves into the SO state, and sends
SO compressed headers. In a reliable mode, the compressor
waits for the acknowledgement of the decompressor, and the
number of packets sent depends on the round trip time between
the compressor and the decompressor. Typically, the number of
packets sent would be higher. As we compare TCP flows, the
IPHC compression applies only to the fixed parameters in the
IP header, and not into the TCP header.

We notice that the thresholdτ induces relatively limited
changes, whereas the number of packets needed to change

states has a much more important impact. In the remainder
of the document, we will consider the impact of the transition
levels on the performance of IPHC, and set the value ofτ to 1s.

Fig. 6. IPHC compression

IPHC performs well, on average. The performance should be
discussed with respect to the application. As discussed earlier,
out of the IANA Well Known Ports that see significant traffic,
only ftp and the printer spooler ports are long lived. We will see
how FBHC compares with IPHC for some of these Well Known
Ports in the next section.

1) FBHC vs. IPHC: We compare also the overall band-
width savings on the overall traffic for both FBHC and IPHC.
We study the gain for the applications commonly viewed as the
strategic drivers for wireless applications: web browsing (ports
80 and 443) and email (ports 110 and 143) for the 1s thresholds.

Email:
For email, FBHC attains a compressed header size of 12

bytes: the mail port is one of the most frequent, and is always
compressed to 1 bytes for the destination address. Figure 7
shows the different header sizes for the different transition lev-
els for IPHC for IPv6. FBHC outperforms IPHC for IPv6 for
usual 3 packets per state transitions.

Web browsing:
We ran IPHC and FBHC on the web browsing ports (80 and

443, as 8080 did not yield enough traffic on some monitored
nodes to be significant). Figure 7 depicts the behavior of FBHC
and IPHC for both port 80 and 443, for different numbers of
packets per transition in IPHC. We only show IPv4 here. How-
ever, for IPv6, similarly to the mail traffic, FBHC outperforms
IPHC for the web traffic.

Fig. 7. FBHC and IPHC compression for Mail v6 and Web v4

2) Combining IPHC (or ROHC) and FBHC:FBHC only
deals with the information that is external to the flow, whereas
IPHC (or ROHC) deals with the internal information within a
flow. Both algorithms can be combined. The way we combine
them is as follow: we first run FBHC for any new flow. This
means that either the flow is recognized by FBHC, and com-
pressed, or let go as is. If it is recognized by FBHC, then its
compressed header size is 12 bytes, and 20 if not. After enough
packets have been transmitted, IPHC (or ROHC) can compress
the flows, whether or not it is affected by FBHC, in effect taking
over the compression.

To compute the gain is similar to computing the gain for
IPHC with the simple difference: the starting header size is
not fixed to 20 anymore, but is determined by FBHC. Figure 8
depicts the synthesis of the different protocols. There are 12
columns on figure 8: they each correspond to a different appli-
cation (port 80, 110, 143, 443, respectively http, pop, imap and
https) and a different transition levels between ROHC states (2,
3 or 4 packets).

Each column is divided into 6 levels: IPHC for IPv4, IPHC
for IPv6, FBHC for IPv4, FBHC for IPv6 and the combination
of IPHC and FBHC for IPv4 and IPv6.

Fig. 8. IPHC, FBHC and their combination

As we can see, the combination of IPHC and FBHC always
outperforms either one of these algorithms. The combination of
IPHC and FBHC gives a average header length equal to 2/3 of
ROHC for IPv4, and 1/3 of IPHC for IPv6. The gain for IPv6 is
about 10 bytes per packet over theIPHC compressedpackets.

As we discussed in [8], IPHC’s (or ROHC’s) use of band-
width is actually more than the numbers we just gave. The rea-
son is that the variability of the packet size among a single flow
implies that some extra bandwidth has to be allocated to make
room for full headers. Some of the compression gain is lost in
the allocation procedure. How much compression gain is lost
depends on the channel allocation procedure. FBHC does not
have this concern as the channel allocation can be made on the
actual header size, and the header size is constant throughout
the flow.

Furthermore, in a wireless environment, the loss of packets
would induce the re-establishment of the IPHC states. IPHC is
not able to use Second-Order as much in an error-prone envi-
ronment. FBHC performance would stay the same, while the
performance of IPHC would degrade as the error loss probabil-
ity increase.

V. CONCLUSION

We have described here a measurement study of the FBHC
algorithm and a comparison with traditional HC algorithms. We
have shown that the FBHC algorithm outperforms IPHC for
IPv6 mail and web browsing applications.

The main advantage of FBHC over IPHC is that its granular-
ity is at the flow level, and not at the packet level. This simpli-
fies its management. The reader should be convinced that it is
easier and more scalable to update state information for flows
rather than for each packets.

On the other hand, if the complexity of managing IPHC state
is not an issue, then IPHC (or ROHC as well for UDP/RTP
flows) and FBHC can be integrated together. We have shown
that an extra 10 bytes can be saved off from each IPv6 IPHC
compressed headers by combining IPHC with FBHC.

Also, in an error prone environment, having sensitivity only
to flow parameters allow to recover from packet losses more
easily: all HC schemes are designed for wireless environment.
We have not described here any of the complex recovery mech-
anisms from IPHC or ROHC to compensate from single packet
losses. This is not an issue with FBHC.

Further studies will focus on the management complexity of
FBHC implementation. Maintaining compression states -and
its inherent complexity- is currently one of the issues slowing
down a widespread adoption of HC schemes, especially in 3G
cellular networks. We will study the architecture issues to inte-
grate FBHC into 3G networks.

ACKNOWLEDGMENTS

The author would like to thank Jari Malinen for his help in
setting up the measurement tools, and Giao Le, Greg Smith and
David Chau for their assistance and their patience with the mea-
surement process.

REFERENCES

[1] C. Bormann, editor.Robust Header Compression, RFC 3095, IETF, July
2001.

[2] M.Degermark, B. Nordgren, S.PinkIP Header Compression, RFC 2507,
IETF, February 1999.

[3] C. HuitemaIPv6: The New Internet ProtocolPrentice-Hall Inc., Oct. 1997.

[4] Sean McCreary and kc claffy,Trends in Wide Area IP Traffic Patterns: A
View from Ames Internet Exchange.ITC Specialist Seminar on IP Traffic
Measurement, Modeling, and Management, Monterey, California, Septem-
ber 14, 2000.

[5] Cooperative Association for Internet Data Analysis
http://www.caida.org

[6] V.Jacobson, R. Braden, D.Borman.Compressing TCP/IP headers for low-
speed serial linksIETF, Network working group, RFC 1144, Feb. 1990

[7] C. WestphalA User-based Frequency-dependent IP Header Compression
ArchitectureTo appear in proceedings of IEEE Globecom, Taiwan, 2002.

[8] Westphal, C., Koodli, R. IP Header Compression: A Study of Context
EstablishmentTo appear in Proc. of WCNC, New Orleans, March 2003.

[9] Cardwell et al.Modeling TCP latencyProc. of IEEE Infocom, Tel Aviv,
Israel, March 2000

