

Voice Quality Evaluation in Wireless Packet Communication Systems: A Tutorial and Performance Results for ROHC

Stephan Rein Frank H. P. Fitzek Martin Reisslein

Abstract

As wireless systems are evolving towards supporting a wide array of services, including the traditional voice service, using packet-switched transport, it becomes increasingly important to assess the impact of packet-switched transport protocols on the voice quality. In this article, we present a tutorial on voice quality evaluation for wireless packet-switched systems. We introduce an evaluation methodology that combines elementary objective voice quality metrics with a frame synchronization mechanism. The methodology allows networking researchers to conduct effective and accurate quality evaluation of packet voice. To illustrate the use of the described evaluation methodology and the interpretation of the results, we conduct a case study of the impact of Robust Header Compression (ROHC) on the voice quality achieved with real-time transmission of GSM encoded voice over a wireless link.

I. INTRODUCTION

While the main service of the circuit-switched first and second generation wireless cellular systems has been voice, third generation systems are being designed to support a wide range of services, including audio and video applications. This flexibility is achieved by employing packet-switched transport in conjunction with the Internet protocol (IP). The development and refinement of packet-based transport over wireless systems has been and continues to be an active area of research and development. As novel communication and networking protocol mechanisms and refinements for wireless packet-switched transport are being developed and wireless packet voice systems are being deployed, it is important to evaluate the performance of the transport protocol mechanisms and refinements not only in terms of the network metrics, such as packet loss, delay, and jitter, but also in terms of the subjective quality experienced by voice users.

Generally, when evaluating the quality of packet voice one may distinguish between three qualities, namely the network quality, the objective quality, and the subjective quality, as illustrated in Figure 1. While the network quality reflects the provider's perspective, the objective and the subjective quality reflect the customer's perspective. The network quality can be relatively easily measured by network parameters, such as the packet loss rate or the packet delay or jitter. The subjective quality is generally more meaningful than the network quality, as it relates directly to the user perceived quality. Assessing the

A related conference paper appears in the *Proceedings of the IASTED Int. Conference on Internet and Multimedia Systems and Applications (IMSA)*, pages 461–466, Honolulu, HI, August 2003.

F. Fitzek is with the University of Aalborg, Denmark, email: ff@kom.aau.dk

M. Reisslein is the corresponding author. He is with the Dept. of Electrical Engineering, Arizona State University, Goldwater Center MC 5706, Tempe AZ 85287–5706, phone: (480)965–8593, fax: (480)965–8325, email: reisslein@asu.edu, web: http://www.fulton.asu.edu/~mre. This work is supported in part by the National Science Foundation under Grant No. Career ANI-0133252 and Grant No. ANI-0136774 and the state of Arizona through the IT301 initiative.

S. Rein was with the Communication Systems Group, Technical University Berlin, Germany. He is now with the Electronic Measurement and Diagnostics group, email: stephan.rein@tu-berlin.de. Part of this work was conducted while S. Rein was visiting Arizona State University in 2003.

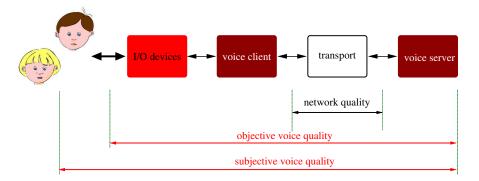


Fig. 1. Different perspectives on quality in performance evaluation of packet voice.

subjective quality, however, is very tedious as it requires listening tests with a large number of test persons. For this reason, objective quality measures that predict the subjective quality are typically employed in the evaluation of voice transmission systems.

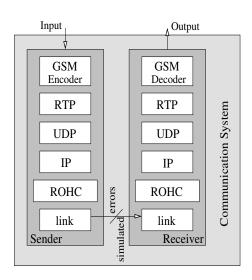
In this article we describe an evaluation methodology for the transmission of packet voice over a wireless system. We first give a tutorial introduction to elementary objective voice quality metrics. We then describe an evaluation methodology that allows for computationally efficient and accurate voice quality evaluations without requiring specialized software. Our evaluation methodology employs a wide array of objective voice quality metrics, including both the traditional and the segmental Signal to Noise (SNR) ratio, spectral distance metrics, and parametric distance metrics. The considered parametric distance metrics include the cepstral distance metric, which can be transformed into the Mean Opinion Score (MOS), thus enabling us to quantify the effect of a protocol mechanism or refinement on the voice quality in terms of the MOS.

We illustrate the use of our evaluation methodology by applying it to the problem of assessing the impact of Robust Header Compression (ROHC) on the voice quality. In particular, we compare the voice quality achieved in a wireless system with ROHC with the voice quality achieved in a wireless system with ROHC.

This paper is organized as follows. In Section II we describe the overall evaluation set-up. In Section III we explain how to evaluate the objective voice quality using an array of metrics ranging from Signal to Noise (SNR) ratio based metrics to spectral and parametric distance metrics which are based on a linear predictive coding (LPC) analysis. In Section IV we present the segmental cross correlation (SCC) algorithm for synchronizing the original voice stream with the voice stream after network transport. In Section V we apply our evaluation methodology to evaluate the impact of ROHC on the voice quality. In Section VI we summarize our contributions.

II. EVALUATION METHODOLOGY

In this section we give a general overview of the system set-up for voice quality evaluation. In an evaluation one is often interested in the change in voice quality caused by a refinement or modification to a basic communication system. To keep the following discussion concrete we consider the addition of Robust Header Compression (ROHC) to a standard wireless communication system with the RTP/UPD/IP protocol stack, illustrated in Fig. 2. In this example, the basic communication system consists of the



the impact of ROHC.

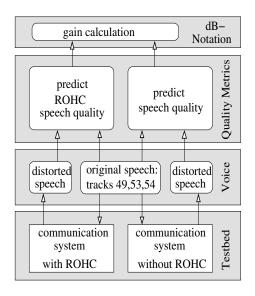


Fig. 3. Methodology for assessing the impact of a system Fig. 2. Protocol stack of typical wireless packet voice commu-modification, namely the addition of ROHC in the considered nication system. As an example system modification we consider example. The distorted speech from the system with and without the modification is compared with the original speech signal to determine the speech quality with and without the refinement. The two speech qualities are then compared to determine the quality gain achieved by the system modification.

sender and receiver protocol stacks containing the RTP, UDP, IP, and link protocol layers, but not the ROHC protocol layer. The modified system consists of the protocol stacks including ROHC, as depicted in Fig. 2. We emphasize that the addition of ROHC is only considered as an illustrative example. The evaluation methodology presented in this and the following sections can be applied in analogous fashion to other refinements or modifications to the communication or networking protocols or mechanisms.

Our evaluation methodology employs a set of original speech files, which consist of a sequence of voice signal samples. In our example evaluations we use tracks 49, 53, and 54 of the sound quality assessment material from the European Broadcasting Union, as illustrated in the center of Fig. 3. The original voice files are fed into the input of the communication system without and with the modification under study; in our illustrative example a real-time voice transmission system with GSM codec and the RTP/UPD/IP and link layer protocol stack, without and with the added ROHC. Following the transmission over the wireless link, which we simulate in our example evaluation, the voice packets pass up through the protocol stack on the receiver side to the GSM decoder. The GSM decoder decompresses each received GSM frame into a sequence of audio samples, which are the output of the communication system under study. Importantly, the wireless link errors typically result in decoded voice signal samples that differ from the original voice signal samples, i.e., the wireless link errors result in distortion of the speech.

Both the communication system without and with the considered refinement or modification give rise to distorted speech at their respective outputs. To assess the impact of the system modification on the voice quality we need to compare the speech distortions from the two systems in a meaningful manner. Towards this end we predict the subjective speech quality for the communication system without and with the modification. In particular, we employ the objective voice quality metrics detailed in the next section to

predict the subjective speech quality. As a final step we compare the predicted subjective speech qualities to calculate the gain in voice quality, as also detailed in the next section.

A. Notation

Before we proceed to the voice quality evaluation we introduce the following basic notation for the voice signal samples. For the calculation of the objective quality metrics a given sequence of voice signal samples is broken into analysis frames of 20 msec duration, which are introduced for the voice quality evaluation in accordance with the temporal resolution of the human ear. Let N denote the total number of frames in a given voice file. Let M denote the total number of samples in a given frame n, $n = 1, \ldots, N$, and note that with a typical sample rate of 8 KHz an analysis frame contains M = 160 samples. Let m, $m = 1, \ldots, M$, index the individual samples within a given frame. Throughout we denote ϕ for the undistorted signal and d for the distorted signal (from the output of the communication system). Let $x_{n,\phi}(m)$ denote the amplitude of sample m in frame n of the undistorted voice signal, and let $x_{n,d}(m)$ refer to the distorted sample.

III. VOICE QUALITY EVALUATION

Expensive and time consuming speech perception tests with human listeners as detailed in ITU-T Recommendation P.800.1 are required to reliably obtain the subjective voice quality achieved by a communication system. The subjective voice quality is typically given on the 5-point Mean Opinion Score (MOS) scale, which ranges from 5 (excellent) to 1 (bad). To avoid the expense and effort required for subjective voice quality evaluation, significant effort has been devoted to developing objective, computer based metrics that predict the results of a subjective evaluation [1].

A. Overview of Objective Voice Quality Metrics

Generally, there are three classes of objective voice quality evaluation metrics, the network parameter based metrics, the psycho-acoustic metrics, and the elementary metrics. The parameter based metrics do not consider the actual voice signal. Instead, these metrics sum impairment factors that characterize the individual components of the communication system. The packet loss and delay in a packet-voice system, for instance, are translated into impairment factors according to provisional translation tables in the ITU–E–model, which is one recent proposal for a parameter based metric. Parameter based metrics, such as the E–model hold promise for predicting the subjective voice quality but still require extensive refinements and verifications.

The psycho-acoustic metrics transform the voice signals to a reduced representation to retain only the perceptually significant aspects. These metrics aim to predict the subjective quality over a wide range of voice signal distortions, allowing for the development as well as the evaluation of non-waveform preserving speech coding algorithms. These coding algorithms perform waveform distortions that are perceptually not significant. Various complex metrics have been developed and refined over the last decade. These include the Bark spectral distance, the measuring normalizing blocks (MNB) technique [2], and the PESQ measure [3], which was recently standardized by ITU–T as recommendation P.862.

TABLE I CORRELATIONS BETWEEN OBJECTIVE VOICE QUALITY METRICS AND SUBJECTIVE VOICE QUALITY. THE DISTORTION TYPES ARE INDEXED BY THE FOOTNOTE MARKERS 1-8.

Objective Metric	Correlation	Ind.	Distortion Types	
(traditional) SNR	$+0.24^{1}/+0.31^{2}$	1	waveform coders: 8 types: [4]	
segmental SNR	$+0.77^{1}/+0.78^{2}$	2	additive- and narrow-band noise: [4]	
Spectral Distances		3	coding distortions, controlled distortions,	
inverse linear unweighted distance	$+0.63^3/+0.48^4$		and narrow-band distortions (23 types): [4]	
unweighted delta form	-0.61^{3}	4	waveform coders and controlled	
log root mean square (RMS)	theoreth. approach		distortions (18 Types): [4]	
Parametric Distances		5	cellular phone: [5]	
Log Area Ratio	$-0.62^3/-0.65^4$	6	coding and other non-linear distortions: [6]	
Energy Ratio	$-0.59^3/-0.61^4$	7	PCM, ADPCM, G.728, MNRU: [2]	
log likelihood	$-0.49^3/-0.48^5$	8	noise masking, band pass filtering,	
cepstral distance	$-0.96^6/-0.95^7/-0.93^8$		echo, and peak clipping: [7]	

Elementary objective voice quality metrics rely on low-complexity signal processing techniques to predict the subjective voice quality. The elementary metrics have generally smaller correlations with the subjective voice quality than the highly complex psycho-acoustic metrics and do not provide the perception modeling that is needed for psycho-acoustic coder algorithm development. The elementary metrics, however, do represent a good engineering trade-off for communication and networking system researchers and developers in that they allow for fairly detailed conclusions about the voice quality while having low computational complexity. We also note that in our evaluation methodology, as illustrated in Figure 3, we focus on system modification in the networking domain (e.g., the introduction of ROHC). Both, the unmodified system (without ROHC) and the modified system (with ROHC) employ the same voice codec and thus experience approximately the same voice codec distortions. Our evaluation methodology is focused on the impact of the modification in the communication or networking system on the voice quality (and is not designed to evaluate voice codec distortions).

B. Evaluation Methodology based on Elementary Objective Metrics

We have selected the elementary metrics listed in Table I for our evaluation methodology. The reliability of objective voice quality metrics is usually verified by a correlation analysis between the calculated objective metric and subjective hearing tests among a distorted data base. Table I gives the distortion types that the various objective metrics have been examined for and the resulting correlations to subjective hearing tests. The larger the magnitude of the correlation, the better the prediction of the subjective voice quality. We note that the traditional SNR has a poor correlation performance. However, we include it because it is often considered as a purely objective quality metric. The traditional SNR aggregates the signal energy in the entire file and relates this aggregate signal energy to the aggregate noise energy. Thereby soft and loud voice analysis frames are not equally weighted. More formally, the signal energy S(n) and the noise energy N(n) of frame n are given by

$$S(n) = \sum_{m=1}^{M} x_{n,\phi}^{2}(m) \tag{1}$$

and

$$N(n) = \sum_{m=1}^{M} [x_{n,d}(m) - x_{n,\phi}(m)]^{2}.$$
 (2)

The traditional SNR is given by

$$D_{\text{trad}} = 10 \cdot \log_{10} \frac{\sum_{n=1}^{N} S(n)}{\sum_{n=1}^{N} N(n)}.$$
 (3)

In contrast, the segmental (short-time or framed) SNR relates the signal energy of each individual frame to the noise energy of the corresponding frame, formally,

$$D_{\text{seg}} = 10 \cdot \log_{10} \sum_{n=1}^{N} \frac{S(n)}{N(n)}.$$
 (4)

This finer granularity relates more meaningfully to the perception of the voice file.

The spectral distances measure the distortions of the frequency amplitudes (see [8] for details) and represent meaningful speech recognition features over a wide range of voice signal distortion types. The inverse linear unweighted and the unweighted delta form spectral distances revealed a superior performance among all spectral distances in [4]. The RMS spectral distance is included because in [9], it is shown that it is a very meaningful measure for speech perception, as it can be physically interpreted and efficiently computed.

Parametric distances use transformations of the linear predictive coding (LPC) coefficients, which are standard signal descriptors in signal processing. We consider three classes of parametric distance measures,

- 1) the *log area ratio* measure,
- 2) the energy ratio/log likelihood measure, and
- 3) the LPC cepstral distance measure.

These three classes of measures allow comparisons of the spectra without calculating computationally demanding Fourier transformations. In signal communications the cepstral distance is a widely employed reference measure for calculating the difference in the shape of the original and the distorted spectra. Its general applicability for speech quality evaluation has been discovered by Kitawaki et al. [6], who compared elementary objective speech quality measures for voiceband codecs. The cepstral distance revealed the best correspondence to the mean opinion score among all objective measures studied. These results are confirmed by Wu and Pols [7], who estimated a correlation of 0.926 for the LPC cepstral distance measure with the mean opinion score. This correlation performance has been further verified for waveform preserving codecs and for the MNRU, which is one of the most common reference conditions for subjective and objective voice quality assessments, as part of the recent study by Voran [2]. Because of its widely verified correlation performance to subjective hearing tests, we use the results of the fundamental study [6] to predict the mean opinion score from the cepstral distance, as detailed shortly.

As illustrated in Figure 4, many metrics use the same coefficients and are similarly calculated. Thus, our approach represents a framework of voice quality metrics allowing computationally effective voice quality evaluation. Each metric gives a distortion index F(n) for a given frame n, as detailed in [8]. The total quality D of a given distorted voice file with respect to the corresponding undistorted file is typically

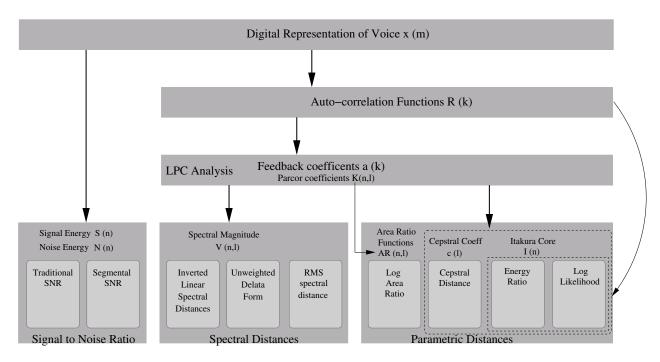


Fig. 4. Framework of used objective voice quality metrics. The calculations are partially similar, but the metrics cover different types of distortions.

obtained by averaging the individual distortion indices:

$$D = \frac{1}{N} \sum_{n=1}^{N} F(n).$$
 (5)

A slightly more complex approach may weigh the distortion indices of the individual frames by the corresponding signal energies, but this weighting has typically negligible impact on the total quality. Equation (5) is only used with the spectral and parametric measures, because the SNR metrics give directly the total quality.

C. Evaluation of Voice Quality Gain

To evaluate the impact of a communication system modification, such as the addition of ROHC, on the voice quality we obtain the total quality both without the modification (denoted by D) and with the modification (denoted by D_{ROHC} for the considered addition of ROHC) for the objective quality metrics described above. For ease of evaluating the voice quality improvement (gain) achieved by the system modification under study we define the gain metrics in decibel (dB) in Table II. (The right half of the table containing the Mapping function can be ignored for now.) Positive gains indicate an improved voice quality while negative gains indicate a deteriorated voice quality. Note from Table I that the SNR and the inverse linear spectral distance have positive correlations with the subjective voice quality, i.e., $D_{ROHC} \geq D$ indicates a higher voice quality. All other metrics have a negative correlation with the subjective voice quality, thus $D_{ROHC} \leq D$ indicates an improved voice quality. For metrics that involve a logarithm (i.e., SNR, segmental SNR, RMS distance, log area ratio, log likelihood) we define the gain in dB as the difference of the metric values. For the inverse linear spectral distance and the unweighted delta spectral distance (which do not employ a logarithm) we use the standard dB formula to obtain the

Metric	Gain [dB]	Mapping function	Symbol
SNR	$D_{ROHC} - D$		
segm. SNR	$D_{ROHC} - D$		
inv. lin. spectral dist.	$20 \cdot \log \left(D_{ROHC}/D\right)$	$D_{cep} = -5281.818D + 105.982$	\Diamond
unw. delta spectral dist.	$20 \cdot \log \left(D/D_{ROHC}\right)$	$D_{cep} = 17.6542D + 0.37997$	∇
RMS spectral distance	$D - D_{ROHC}$	$D_{cep} = 12.8911D + 0.4383$	Δ
log area ratio	$D - D_{ROHC}$	$D_{cep} = 0.46107D + 0.23373$	0
energy ratio	$10 \cdot \log (D/D_{ROHC})^4$	$D_{cep} = 8.1716D - 7.404$	
log likelihood	$D - D_{ROHC}$	$D_{cep} = 0.2867D + 0.7428$	×

dB-gain. For the energy ratio we use 10 as multiplicative factor (and a power of 4 to compensate for the power of $\frac{1}{4}$ in the metric definition, see [8]) in the gain definition to make it comparable to the closely related log likelihood. We note that we adopt these dB-gain definitions to facilitate the comparison of the results of the different metrics and also note that other definitions are possible.

D. Voice Quality Gain on MOS Scale

Finally, in order to asses the impact on the user perception we study the impact of the system modification on the subjective 5-point MOS scale. We transform the values of the cepstral distance to the predicted mean opinion score (MOS), using the mapping verified in [6]. Let D_{cep} denote the voice quality calculated by the cepstral distance. The MOS value is given by

$$MOS = 3.56 - 0.8 \cdot D_{cep} + 0.04 \cdot D_{cep}^{2}. \tag{6}$$

We note that the absolute MOS values obtained with this mapping need to be interpreted with caution, however, the relative difference in the MOS between a base system and a modified system is meaningful [7]. In the context of our illustrative example, we define the MOS gain for the addition of ROHC to the communication system as

$$MOS_{gain} = MOS_{wROHC} - MOS_{w/oROHC}.$$
 (7)

We close this tutorial on voice quality evaluation by noting that we have chosen the elementary metrics in Table I as they represent a sensible engineering approach for the evaluation of communication or networking system modifications. The chosen elementary metrics have good correlations with the subjective voice quality and thus allow for meaningful conclusions about the voice quality. At the same time the chosen metrics are computationally efficient and do not require proprietary software (in fact we make our evaluation software source code publicly available [8]). In order to cover a reasonably wide range of distortion types we selected a set of elementary metrics (see Table I). In Section V we provide a technique for verifying the correlation of the other elementary metrics to the cepstral distance (and thus to the MOS).

IV. SEGMENTAL CROSS CORRELATION ALGORITHM (SCC)

We consider the transfer voice over a communication system. Thereby, voice frames may (i) be completely lost, (ii) experience varying delays, or (iii) suffer voice signal distortions due to bit errors.

The objective voice quality is based on a comparison between the received (distorted) and the original (reference) voice streams, which need to be synchronized for the comparison. There are generally two types of approaches to synchronize the streams: (i) packet based approaches, and (ii) voice signal based approaches. Packet based approaches employ timestamps and sequence numbers (e.g., using RTP) to detect lost packets and varying packet delays and compensate for these effects by replacing lost packets, for instance by using interpolation techniques, and adjusting the playout time of the voice frames. Voice signal based approaches, on the other hand, employ signal correlation techniques to align frames in the distorted and reference streams, see for instance [3]. For signal based synchronization we employ the segmental cross correlation (SCC) algorithm, which we outline in this section and use in our case study reported in Section VI. We note that the voice quality evaluation methodology presented in the previous section can be employed both in conjunction with packet based synchronization and signal based synchronization.

Due to space constraints we give here only an outline of a simplified version of the SCC algorithm and refer the interested reader to [8] for details on the full algorithm. For the synchronization the reference file is divided into consecutive synchronization frames of U samples each. The goal of the synchronization is to divide the distorted file into synchronization frames such that a frame in the distorted file matches well with the corresponding frame in the reference file. More formally, let $x_{w,\phi}(u)$, $u=1,\ldots,U$, denote the sample values in synchronization frame w in the reference file. Let $x_d(\cdot)$ denote the sample values in the ("unframed") distorted file. The algorithm is based on the normalized segmental cross correlation function

$$SCC_{w}(\tau) = \frac{\sum_{u=1}^{U} [x_{w,\phi}(u) - \bar{x}_{w,\phi}] \cdot [(x_{d}(u + (w - 1)U + \tau) - \bar{x}_{d}(w,\tau)]}{\sqrt{\sum_{u=1}^{U} [x_{w,\phi}(u) - \bar{x}_{w,\phi}]^{2}} \sqrt{\sum_{u=1}^{U} [x_{d}(u + (w - 1)U - \tau) - \bar{x}_{d}(w,\tau)]^{2}}},$$
(8)

where we denote $\bar{x}_d(w,\tau) = \frac{1}{U} \sum_{u=1}^U x_d(u+(w-1)U+\tau)$. For the first frame w=1 in a file the cross correlation is initially evaluated for a search range $0 \le \tau \le R$. The displacement between the frame in the reference file and the distorted file is tentatively estimated as the displacement that attains the maximum correlation, i.e.,

$$\tau_{\max}(w) = \arg\max_{0 \le \tau \le R} SCC_w(\tau). \tag{9}$$

If this maximum cross correlation is larger than a threshold then the displacement estimate (match) is accepted, otherwise the search range is increased. For the subsequent frames $w,\ w\geq 2$, the cross correlation is initially evaluated for the search range $\tau_{\max}(w-1)-R\leq \tau\leq \tau_{\max}(w-1)+R$, i.e., the search range is adaptively shifted according to the displacement of the preceding frame w-1, as detailed in [8] where we also provide fast Fourier transform techniques to reduce the computation time of the SCC algorithm.

We finally note that both the elementary and the psycho-acoustic voice quality metrics described in Section III do generally not include synchronization and can therefore not be used to directly evaluate the received voice signal after packetized transport. The main innovation of PESQ [3] over previous perceptual metrics is the signal based synchronization of the received voice signal. PESQ, which requires the purchase of proprietary software, performs highly complex algorithms in the time and frequency domain [3] and may give better synchronization performance than the SCC algorithm. However, the SCC algorithm, which has a low complexity and for which we make the source code publicly available [8],

does allow for meaningful delay jitter measurements in the received voice signal, as presented in [8] and synchronizes the voice signals to allow for the objective voice quality evaluations presented in the next section.

V. CASE STUDY: IMPACT OF ROHC ON VOICE QUALITY

The purpose of the case study presented in this section is to illustrate the use of the evaluation metrics presented in the preceding section and to give an example of how to interpret the results obtained from an evaluation. In this case study we examine the impact of adding Robust Header Compression (ROHC) [10] to a basic wireless packet voice communication system, as illustrated in Fig. 2. ROHC has been recently developed to reduce the overhead due to the protocol headers, which result typically in voice packets consisting of 30 bytes of compressed voice data and 40 bytes of RTP/UDP/IP headers. ROHC exploits redundancies between the headers in successive packets of a given voice flow to compress the protocol headers.

We note that the impact of header compression on the voice quality has received very little attention so far. The only study in this direction that we are aware of is [11]. In [11] the objective speech quality degradation is studied (using the traditional SNR which has only a weak correlation with user perception) for Robust Checksum-based Compression (ROCCO) and the Compressed Real Time Protocol (CRTP), which may be considered as precursors to ROHC. In contrast, in this case study we consider the state-of-the-art ROHC compression scheme and evaluate the voice quality using our evaluation methodology which employs an array of objective metrics that allows for accurate predictions of the subjective voice quality of hearing tests. We give here only a brief overview of our evaluations of voice transmission with ROHC and we refer the interested reader to [8] for a more extensive evaluation.

In Figures 5 a)-c), we plot the voice quality gain from the addition of ROHC (in dB) for the objective metrics described in Section III-B as a function of the logarithm with base 10 of the bit error probability on the wireless link. We observe that all metrics indicate an increasing positive gain with larger bit error probabilities. As an exception, the gain for the traditional SNR decreases for bit error probabilities above $10^{-3.8}$. Because of the unequal weighing of soft and loud frames, the traditional SNR reveals here its worse granularity. The SNR measures indicate a gain between two and three decibels for link error probabilities in the $10^{-3.4}$ to 10^{-3} range. Similarly, the spectral distances indicate gains between 0.02 and 2 dB for link error probabilities of 10^{-3} and the parametric distances give gains between 0.5 and 1 dB. Overall, these results indicate that the voice quality does not suffer from the addition of ROHC to the base system. On the contrary, it is improved, especially for large bit error probabilities on the wireless link.

Next, we consider the change in voice quality due to the addition of ROHC on the 5-point MOS scale, using the mapping from the cepstral distance to the MOS given in Equation (7). In Figure 5 d) we plot the gain in the voice quality from the addition of ROHC in terms of the MOS as a function of the bit error probability. We observe that the gain in the MOS increases roughly exponentially with increasing error probability and reaches 0.26 for error probabilities of 10^{-3} .

1) Relationship between Quality Metrics: Generally, in objective voice quality evaluation it is advisable to consider a variety of metrics since each individual metric (including the cepstral distance used to evaluate the MOS_{gain}) has been evaluated for a limited set of distortions, see Table I. We therefore describe now

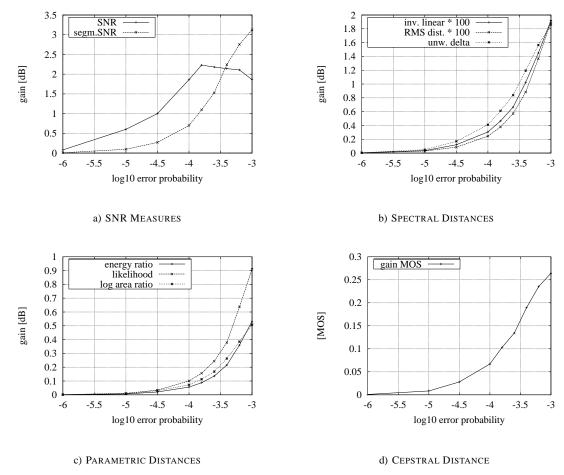


Fig. 5. Gain in voice quality with addition of ROHC as a function of bit error probability.

a technique for examining the correlations between the total objective quality D_{cep} obtained with the cepstral distance and the corresponding quality D obtained with the other individual LPC analysis based metrics. We examine these correlations by means of a scatter plot, which is generated as follows. We express the qualities D of the other LPC based metrics as a linear function of the cepstral distance quality D_{cep} . We determine the slope and offset of these linear functions by considering the D and D_{cep} obtained for the bit error probabilities of 10^{-6} and 10^{-3} for the base system (without ROHC). The resulting linear mappings are reported in Table II. Next, we plot the D_{cep} obtained by these linear mappings as a function of the actual measured D_{cep} , resulting in the scatter plot in Figure 6. In the plot the filled (shaded) symbols correspond to the qualities with the system modification (i.e., with ROHC). The unfilled symbols correspond to the qualities without ROHC. We observe that the points are fairly closely scattered around a straight line with slope one. This indicates that there is a high correlation between the total qualities D obtained with the considered LPC based metrics, and the total quality D_{cep} obtained with the cepstral distance.

VI. CONCLUSIONS

In this paper we have provided a tutorial on a methodology for evaluating the voice quality in wireless packet voice systems. Our methodology employs elementary objective voice quality metrics which

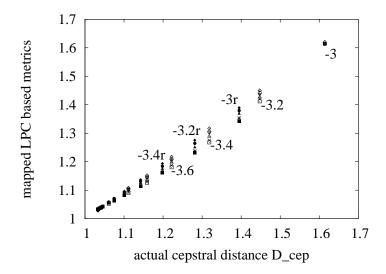


Fig. 6. Scatter plot of cepstral distance obtained from linear mappings of other LPC based metrics as a function of actual cepstral distance.

predict the subjective voice quality with good reliability. In addition, we have provided a segmental cross correlation (SCC) algorithm for the voice signal based synchronization of the received (distorted) voice signal with the original (reference) signal. Our tutorial makes the objective voice quality metrics and the SCC algorithm readily accessible and employable by networking researchers to evaluate novel protocol mechanisms and refinements for wireless voice communication and networking systems.

We have applied our evaluation methodology to assess the impact of Robust Header Compression (ROHC) on a wireless voice communication system. We have found that the addition of ROHC improves the voice quality. The improvement reaches 0.26 on the 5-point Mean Opinion Score (MOS) for a wireless bit error probability of 10^{-3} . This result in conjunction with the result that ROHC cuts the total bandwidth required for the voice transmission almost in half [8] indicates that by adding ROHC, the number of 3rd generation mobile cell phone users could nearly be doubled without allocating more link bandwidth and without compromising the voice quality.

ACKNOWLEDGMENT

We are grateful for interactions with Professor Thomas Sikora of the Technical University Berlin, Germany, throughout this work. We are also indebted to Patrick Seeling of Arizona State University (formerly with acticom GmbH), who helped with setting up the experimental testbed and the scripting of the measurement experiments.

REFERENCES

- [1] "ETSI EG 201 377-1 V1.2.1 (2002-12), Speech processing, Tranmission and Quality aspects (STQ); Specification and measurement of speech transmission quality; Part 1: Introduction to objective comparison measurement methods for one-way speech quality across networks," Dec. 2002.
- [2] S. Voran, "Objective estimation of perceived speech quality, Part II: Evaluation of the measuring normalizing block technique," *IEEE Transactions on Speech and Audio Processing*, vol. 7, pp. 383–390, July 1999.

- [3] A. W. Rix, M. Hollier, A. Hekstra, and J. Beerends, "Perceptual evaluation of speech quality (PESQ), the new ITU standard for end-to-end speech quality assessment. Part I time-delay compensation," *Journal of the Audio Engineering Society*, pp. 755–764, Oct. 2002.
- [4] S. Quackenbush, T. Barnwell III, and M. Clements, Objective Measures of Speech Quality. Prentice Hall, 1988.
- [5] K. Lam, O. Au, C. Chan, K. Hui, and S. Lau, "Objective speech quality measure for cellular phone," in *Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-96)*, vol. 1, Atlanta, GA, May 1996, pp. 487–490.
- [6] N. Kitawaki, H. Nagabuchi, and K. Itoh, "Objective quality evaluation for low-bit-rate speech coding systems," in *IEEE Journal on Selected Areas in Communications*, vol. 6, no. 2, Feb. 1988, pp. 242–248.
- [7] S. Wu and L. Pols, "A distance measure for objective quality evaluation of speech communication channels using also dynamic spectral features," in *Proceedings of the Institute of Phonetic Sciences Amsterdam (IFA)*, vol. 20, 1996, pp. 27–42.
- [8] S. Rein, F. Fitzek, and M. Reisslein, "Voice quality evaluation for wireless transmission with ROHC (extended version and evaluation software source code)," Dept. of Electrical Eng., Arizona State University, Tech. Rep., May 2004, available at http://www.fulton.asu.edu/~mre.
- [9] A. Gray and J. Markel, "Distance measures for speech processing," *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 24, no. 5, pp. 380–391, Oct. 1976.
- [10] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L.-E. Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svanbro, T. Wiebke, T. Yoshimura, and H. Zheng, "RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed," July 2001.
- [11] A. Cellatoglu, S. Fabri, S. Worrall, A. Sadka, and A. Kondoz, "Robust header compression for real-time services in cellular networks," in *Proceedings of the Second International Conference on 3G Mobile Communication Technologies*, London, UK, Mar. 2001, pp. 124–128.

PLACE PHOTO HERE **Stephan Rein** studied Electrical Engineering at the Technical University of Aachen, Germany, and the Technical University of Berlin (TUB), Germany. He received the Dipl.-Ing. degree in electrical engineering from the TUB in 2003. From March 2003 to October 2003 he visited the multimedia networking group in the Department of Electrical Engineering at Arizona State University, Tempe. He is currently pursuing the Ph.D. degree at the Institute for Energy and Automation Technology, Technical University of Berlin. His current research interests include digital signal processing with emphasis on wavelet applications for automotive security systems.

PLACE PHOTO HERE **Frank H. P. Fitzek** is an Associate Professor in the Department of Communication Technology, University of Aalborg, Denmark, heading the Future Vision group. He received his diploma (Dipl.-Ing.) degree in electrical engineering from the University of Technology RWTH Aachen, Germany, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical Engineering from the Technical University Berlin, Germany in 2002. He co-founded the start-up company acticom GmbH in Berlin in 1999. In 2002 he was Adjunct Professor at the University of Ferrara, Italy.

PLACE PHOTO HERE Martin Reisslein is an Assistant Professor in the Department of Electrical Engineering at Arizona State University, Tempe. He received his Ph.D. in systems engineering from the University of Pennsylvania in 1998. From July 1998 through October 2000 he was a scientist with the German National Research Center for Information Technology (GMD FOKUS), Berlin and lecturer at the Technical University Berlin. He maintains an extensive library of video traces for network performance evaluation, including frame size traces of MPEG-4 and H.263 encoded video, at http://trace.eas.asu.edu.