

Robust Header Compression (ROHC)

A step towards all-IP wireless networks

Carsten Bormann

TZI

ISSLOW: Integrated Services over slow links

Background: RTP is replacing TDM

ISSLOW: 1996 initiative for packet multimedia over serial

- ◆ 1) Low-speed links blocked by large frames: 1500 Bytes == 400 ms (@ 28.8 kbit/s) → Latency!
 - Provide fragmentation, suspend/resume: RFC 2686..2689
- **♦ 2) Header Overhead:**
 - 44 Bytes @ 50 frames/sec == 17.6 kbit/s
 - A) Switch to fewer, larger packets → Latency!
 - B) Provide good header compression: RFC 2507, 2508, 2509
- 3) Hard to reserve bandwidth with unknown header requirements
 - Obtain compressibility hints from application: RFC 3006

Header Compression: e2e vs. hop-by-hop

- RTP header is 12 bytes
 - SSRC is constant, SN and TS increase predictably
- Proposal: end-to-end header RTP header compression
 - Compress at source, decompress at destination
 - Issue: The biggest header is IP (20 bytes), and there is UDP (8 bytes)
 - Reordering makes it hard to compress very efficiently
- Header compression schemes operate hop-by-hop
 - Can use ordering on single link
 - Can compress IP header as well (20/40 bytes for IPv4/6)
 - Can compress between sources and destinations that don't care
 - **▼** Localized complexity!

Existing Header Compression Standards

◆ TCP/IP header compression (VJ HC)

RFC 1144

- Compresses many IP/TCP header pairs to 4 bytes
- ◆ IP header compression (née: IPv6 HC)

RFC 2507

- Compresses successive headers identified by protocol field
- Works on simplex links (no negotiation, no feedback)
- Stops with UDP header (no further protocol field)
- Casner/Jacobson: CRTP

RFC 2508

- Can compress IP/UDP/RTP or just IP/UDP
- Identify RTP by heuristics: more aggressive than IPHC
- Requires duplex links (error feedback)
- Still loss-less (e.g., preserves UDP checksum, if present)
- **◆** CRTP now "plugs" into IPHC

RFC 2509

together with a PPP mapping document

Header Compression: Status end of 2000

- VJ HC has been available for a long time
- CRTP implementations now in the leading products
- ◆ PPP/IP/UDP/RTP now qualifies as an efficient method to run multimedia information over serial lines
 - no need for TDM style multiplexes any more
 - no problems with integration of data and multimedia
- Adopted for wireless
 - 3GPP references RFC2507 in R '99

Enter Wireless: The need for ROHC

- CRTP Issue: Robustness
 - Delta coding works best on loss-free links
 - One loss ➡ inconsistency!
 - CRTP repair mechanism (CONTEXT-UPDATE) needs a round-trip
- Loss propagation
 - Losing one packet causes losing a round trip's worth
 - Wireless: high error rate, large RTT
- Damage propagation
 - Not really an issue for PPP (16-bit or 32-bit CRC)
 - Higher spectrum efficiency calls for shorter checksums on 3G
 - Residual bit errors create long strings of bad packets
 - RFC2508 not appropriate for high-delay, high-loss links

IP + UDP + RTP header (20+8+12 byte)

<u>1</u>	3′	16 24		8 1		0		
	total length			TOS byte		hlen	vers=4	
	t offset	fragment	flags	IP identification				
] IP	ksum	header checksum				time to live		
	source IP address							
	destination IP address							
UDP	destination port number			source port number				
	sum	UDP checks		UDP length				
	number	RTP sequence n		PT	M	CC	V=2 P X	
RTP	timestamp							
	synchronization source (SSRC) identifier							
]	contributing source (CSRC) identifiers							
_								

© 2001 Carsten Bormann

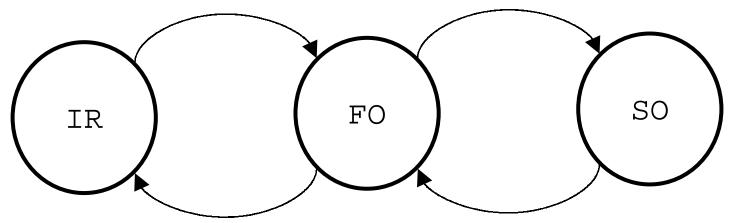
TZI Digitale Medien und Netze

no change + redundant fields

_	31	16 24		•	8	0		
		total length	TOS byte	hlen	vers=4			
		fragment offset	flags	IP identification				
IP		header checksum	to live protocol		time to			
	source IP address							
	destination IP address							
UDP	destination port number			source port number				
שטט	UDP checksum			UDP length				
		RTP sequence number	/I PT	CC M	V=2 P X			
RTP	RTP timestamp							
	synchronization source (SSRC) identifier							
	contributing source (CSRC) identifiers							
-								

Basic Function

Two kinds of header fields:


- Essentially constant:
 - Context-identifying (IP addresses, ports, protocol...)
 - Rarely changing (TTL, TOS, Payload type)
- Dynamic ("the Five Fields"):
 - IP ID: Usually increments by 1 (or 256)
 - UDP checksum: Essentially random (or constantly zero)
 - RTP Marker bit: set once per talkspurt
 - SN (RTP sequence no): increments by 1
 - TS (RTP timestamp): increments by TS_STRIDE
 - ▼ (or more between talkspurts)

Compressor states

Static context Values of Five Fields established & strides established

Change in "non-changing" field

Five fields
do not change
as anticipated.
(E.g., start of talk spurt)

ROHC robustness (1)

- Do not use delta coding!
 - LSB coding (modulo) as a robust alternative
 - E.g., 4 to 6 bits are sufficient for the SN
 - Allow some variable-length coding for unusual cases
- Instead, use SN as "kernel field"
 - Send it with every packet
 - Losses or pre-compressor reorderings are apparent!
- Other fields: express as f(SN)
 - Characteristics of f are established in FO/SO state
 - E.g., for time stamp: f(SN) = TS_STRIDE*SN + TS_OFFSET (simplified)

ROHC robustness (2)

How to ensure state synchronization in the presence of losses and residual bit errors?

- A) Saturation (as with RFC2507): "unidirectional mode"
- ◆ B) Optimism and Check: "optimistic mode"
 - Send a CRC of uncompressed packet with each packet
 - Repeat changes often enough (limited saturation)
 - CRC catches the rest (1 RTT loss propagation!)
 - CRC also catches many residual bit errors
 Ambiguity
- C) Pessimism and Acknowledgements: "reliable mode"
 - Do not assume state change at decompressor until acknowledged
 1 RTT of less efficient operation
 - Variant: Can play optimistic while waiting for ACK

ROHC framework

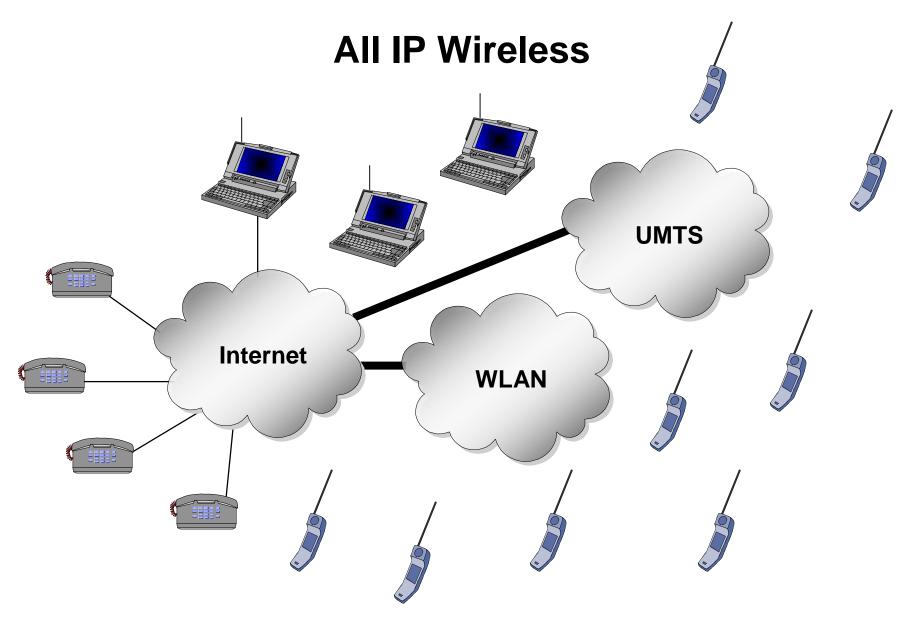
- Multiple contexts per channel (CID = context ID)
- Each context in use is bound to a profile
 - Set up by IR (initialization and refresh) packets
 - Currently defined: uncompressed, RTP, UDP, ESP
- Can define new profiles later
- Common packet types:
 - Short CID-extender
 - Feedback
 - IR/IR-DYN common prefix (must work on any context)
 - Segmentation protocol and padding

ROHC: The Result

- Can compress most headers to 1 byte
 - Unidirectional and optimistic mode:
 - Reliable mode:

	0	1	2	3	4	5	6	7
	0	++ 0					CRC	
	0	1	2	3	4	5	6	7
-	-	_	++++ SN					
+===+==++==++==++==++==++==++								

- Robust against up to 12 (or >30) losses in sequence
 - Measurements indicates long loss trains are rare
 - Optimized for typical 3G style wireless voice (or video) links
 ▼ (100 ms RTT, 20 ms frames, < 200 ms handover, ~ 1 s avg talkspurt)
 - Good transparency
- Support for IPv4/IPv6, most extension headers, IPSEC, GRE
- ◆ Draft –07 out this week ⇒WG/IETF last call



Future

- 0-byte solutions:
 - Use the tight radio frame timing to indicate SN/TS progress
 - Needs separate channel for non-SO packets
 - Gets rid of uninspired "header stripping" proposals
 - Requires buffering/resequencing at compressor
- ◆ ROHC TCP:
 - The requirements for robustness are maybe less stringent
 - ▼ Can do retransmission at link layer (see PILC)
 - Less stringent time constraints on development
 - New problems: Options like SACK, timestamps

