

Motivation

- Offer portable TV on demand type of devices
 - UE effectively becomes the last caching node in the network
- · Generate additional usage of data services
 - Provide dedicated data services related to the content
- Enablers
 - Multi-mode / multi-system devices with powerful processing
 - Increasing storage capacity in portable devices

3

OUALCOMM:

User download alternatives

- Two main alternatives
 - Home/office based delivery (portable)
 - Wireless WAN based delivery (mobile)
- Benefits of mobile WAN based multicast
 - Enables real time or near real time delivery
 - Ubiquitous
- · Key factor influencing adoption rate
 - Cost

QUALCOMM:

Motivation for mobile WAN multicast

- Starting point
 - Content delivery using unicast
- Issue
 - Cost of delivery does not benefit from economies of scale
- Requirement
 - Reduce cost per user for popular content delivery
- Solution
 - Multicast

5

OHALCOMM:

Multicast technology options

- Satellite based
 - S-DxB
- Terrestrial based
 - Broadcast based
 - T-DxB
 - QUALCOMM'S MediaFLO
 - Cellular based
 - 3GPP MBMS

OHALCOMM.

Some key parameters affecting technology choice

- Type and mix of services
 - Live TV or simple downloads?
- Type and mix of content
 - Global or local?
- User penetration
 - Variable or consistently high?
- Traffic models
 - Periodic or continuous?
- Coverage requirement
 - Outdoor or in building?
- Market timing
 - 2006, 2007, 2008, 2009?

- · Regulatory framework
 - Allowed to broadcast?
- Spectrum asset
 - Which band?
- · Power and tower height limits
 - Influences site density
- Existing infrastructure
 - Greenfield or incremental upgrade?
- Technology
 - Standard based?

7

ONALCOMM.

QUALCOMM's approach

- Strongly believes in wireless content delivery services
- · Will support the operators' choice of technology
- · Developing and promoting further technology enhancements
 - MediaFLO for the broadcast approach
 - 1x-EV-DO Platinum in 3GPP2
 - Enhanced MBMS as part of the 3GPP evolution effort

MBMS Release-6

- Re-use of Release-99
 - Mapping on common channel
 - Long interleaving for time diversity
 - Open loop transmit diversity
- **New functionality**
 - Spectrum efficiency

 - Simulcast + block selection at MAC layer
 Simulcast + soft combining at physical layer
 - Battery saving
 - · Periodic notification of new sessions
 - · Data scheduling

MBMS Release-6 performance

- Single cell transmission/reception
 - No diversity
 - 100 kbps
 - Transmit diversity
 - 150 kbps
- Multi-cell transmission/reception
 - Loose synchronization
 - 384 kbps
 - Tight synchronization (few ms)
 - 512-768 kbps
- Spectrum efficiency
 - 0.02 to 0.2 bit/Hz depending on condition & methodology

- · Results based on TR 25.803
- Assumptions
- 90% power assigned to MBMS
 - Ped-A 3 km/h (most demanding)
 - 95% coverage
 - Typically ensures 99%+ coverage in less demanding channels

11

ONALCOMM.

Why not better?

- PtM spectral efficiency is driven by the worst case scenarios
 - Typically edge of cell coverage users
- Efficiency is limited by inter-cell interference
 - Simulcast + combining improves C but does not help on I
 - Equalization is complex due to cell specific scrambling code
- · Asynchronous network operation

What else?

- Requirement
 - Simulcast such that signals received from multiple cells can be processed in the same way as a signal from a single cell with additional delay spread.
- Possible solutions
 - CDM based
 - · Same single scrambling code used for all cells
 - OFDM based
 - Cyclic prefix

13

OHALCOMM.

OFDM & CDM in the context of multi-cell PtM

- Performance
 - Fundamental performance should be in a similar range assuming equalization for the CDM approach.
- Complexity
 - Related to the maximum delay spread to be supported and BW of the system.

ONALCOMM.

Deployment scenario - Spectrum

- Transmission of DL only data in paired spectrum makes sense if the service is such that transmission can occur during off peak times.
- Transmission of DL only data in paired spectrum is a waste of UL resource if and when considered during peak hours.
- An ideal multicast signal structure would be one that can be deployed transparently in both paired and unpaired spectrum.

15

OHALCOMM.

Deployment scenario - Multiplexing

- Continuous allocation of a DL carrier frequency to MBMS services may not always be the preferred deployment scenario depending on the service offering and user demand.
- Possibility to efficiently multiplex the MBMS services with other services is highly desirable and will facilitate support for simultaneous services operation
- Assuming the new MBMS signal has a slot level TDM structure:
 - Can be time multiplexed with the HS-PDSCH (and its evolution) in the FDD domain
 - Can be time multiplexed with any of the channels in the TDD domain

QUALCOMM:

UTRA and UTRAN Evolution

- 3GPP recently approved to study the longer term evolution of the UTRA and UTRAN beyond release-6
- Enhanced MBMS is in the scope of the 3GPP evolution work
- Key component of QUALCOMM's flexible downlink proposal

QIIALCOMM

QUALCOMM'S priorities for 3G Evolution

- Priorities
 - 1. Enhanced network architecture and protocols
 - 2. Enhanced Multicast
 - 3. Flexible bandwidth Unicast
- Enhanced multicast in 3GPP
 - Enhance MBMS efficiency
- Unicast evolution in 3GPP
 - Multi-carrier WCDMA
- Similar evolution efforts are being considered in 3GPP2

19