MBMS – Broadcast / Multicast in UMTS Networks

Uwe Horn

Ericsson Corporate Research Multimedia Technologies Ericsson GmbH, Eurolab Aachen, Germany

MobileTV is not ...

... mobilizing linear TV

Services and transport

Mobile TV perspective

TV Centric

Movies

News

Sports

Soaps

Enhanced TV/video

- TV / video content on-demand
- Personalized / local news
- Gambling, betting
- Interactive game shows
- Click-to-buy
- Ringtones, images

TV + Data and Communication Services

- Chat
- Statistics-on-Demand (e.g. Sports)
- . . .

Unicast

Multicast & Broadcast

Needed transport capacity

Future services require a mix of broadcast and unicast

Linear TV / on-demand integration

Invisible to end-user

EPG

LinearTV (Broadcasted over MBMS, DVB-H,...)

On-demand (3G Unicast)

Multimedia Broadcast Multicast Service

MBMS from a bird's-eye view

MBMS can deliver the same TV quality as DVB-H

MBMS allows flexible control about time and geographical area

- MBMS Service Area defines a set of base stations over which a service is broadcasted
- Session Start / Session Stop command are used to decide <u>when</u> a service is multicasted / broadcasted
- Supports "broadcast on-demand" e.g. broadcast is only switched on if there are enough users demanding the same content

3GPP/MBMS broadcast capacity

Per 5 MHz carrier

# of channels @ 128 kbps	6	12	24	40
# of channels @ 256 kbps	3	6	12	20

Cell Common Scrambling

Proposed for 3GPP R7

- In 3GPP R6 each cell uses its own scrambling code.
- Even if the same content is transmitted from multiple cells, their signals will interfere due to the scrambling.
- Cell Common Scrambling (Ericsson 3GPP proposal)
 - Superimposed signal looks like multipath
 - HSDPA terminals under development can constructively combine individual signals
- Capacity gain up to factor 3

MBMS in E-UTRA (LTE)

- OFDM downlink bandwidth 1.25, 1.6, 2.5, 5, 10, 15 or 20MHz
 - "Resource aggregation" supported to exploit even wider variety of channel bandwidth (e.g. 5MHz+2.5MHz could be suitable for 8MHz channels)
- MBMS designed into the system from the start
- Capacity gains achievable by multi-cell SFN broadcasting an essential design criterion
- Support of MIMO to increase achievable cell data rate in multi cell SFN broadcasts where cell edge SINR and diversity is high
 - Mandatory receiver antenna diversity
- Turbo coding (vs convolutional coding in DVB-H)

Traffic modeling for hybrid unicast / broadcast TV delivery

 Given a certain traffic pattern, what is the best unicast / broadcast mix?

- Input
 - Channel popularity and bitrate
 - Session length and zapping behaviour
 - Unicast capacity (expressed in Erlang)
 - MBMS capacity
- Outcome: blocking probability versus TV user density

10

Simulation results

Hybrid HSDPA / MBMS TV service delivery for 20x 128 kbps channels

- Unicast works well for up to 170 TV subscribers per cell
 - Corresponds to almost 30% of the addressable market assuming a user density of 600 users per cell
- Significant drop in blocking probability from introducing just one broadcast bearer
- 2 broadcast bearers give the best compromise

Conclusion

- Future services require tight integration between unicast and broadcast, invisible to the end-user
- MBMS: 6 channels@256 kbps per 5 MHz during 2007/2008, ongoing MBMS evolution in 3GPP
 - Common cell scrambling code
 - MIMO, turbo coding
- Efficient approach for TV delivery: hybrid HSDPA / MBMS broadcast transmission
 - 2-3 broadcast bearers sufficient in the beginning

