

NR Physical Layer Design: Physical layer structure, numerology and frame structure

Havish Koorapaty
3GPP TSG RAN WG1 vice-chairman (Ericsson)

NR – Key benefits

Ultra-lean

Forward compatibility

Wide spectrum range

Low latency

Multi-antenna

Forward compatibility

- Minimize "always-on" transmissions (ultralean)
 - Bad example: Always-on CRS
- Keep transmissions together in frequency
 - Bad example: LTE PDCCH/PCFICH/PHICH

- Avoid static/strict timing relations
 - Bad example: LTE uplink HARQ
- Reserved resources
 - Downlink transmissions rate matched around

Frequency bands

Mainly unpaired spectrum

Frequency Range 1

Subcarrier spacing 15/30/60 kHz
Max carrier bandwidth 50/100/200 MHz

Frequency Range 2

Subcarrier spacing 60/120 kHz Max carrier bandwidth 200/400 MHz

Time-frequency structure

Frame structure

- Single frame structure
 - Applicable to FDD and TDD
- Dynamic TDD baseline
 - Possible to semi-statically configure UL/DL split
- 15 kHz slot identical to LTE subframe
 - Including extra samples in every 7th symbol

Frame structure

Transmissions not restricted to slot boundaries

Resource grid

One resource grid per numerology and antenna port

- Resource block = 12 subcarriers
 - One dimensional unit (unlike LTE)
- Resource element = 1 subcarrier in one OFDM symbol

Resource-block grid

Reference point A

9

Bandwidths

- Up to 400 MHz component-carrier bandwidth (20 MHz for LTE)
- Up to 16 component carriers
 - Overall bandwidth depends on frequency band
- Not all devices must support the full network carrier bandwidth

Bandwidth parts

- To support UEs not capable of full carrier bandwidth
- To support bandwidth adaptation (reduced UE power consumption)
- Up to 4 bandwidth parts per carrier, one of which is active
- A UE is not supposed to receive/transmit outside the active bandwidth part
- Many parameters are configured per bandwidth part

Carrier aggregation and supplementary uplink

Main use case: bandwidth extension

Supplementary uplink

Main use case: uplink coverage

Carrier aggregation

Supplementary uplink

NR-LTE Coexistence

NR can coexist with LTE on the same carrier

Texample: NB-IoT or eMTC for MTC on same carrier as NR

Downlink and uplink co-existence

Uplink-only co-existence

Reserved resources

- To enable coexistence with LTE/NB-IoT on the downlink
 - → Treat LTE CRS as reserved resources.
- To facilitate forward compatibility in downlink
 - Three sets can be configured using a set of bitmaps
 - Dynamic indication of whether resources are reserved or not

14

Transport channel processing

Transport-Channel Processing

Overall transport-channel processing resembles LTE

Main differences:

- LDPC coding
- Multi-antenna handling
- OFDM and DFTS-OFDM in UL

Coding

♠ CRC per TB and CB (as in LTE)

LDPC coding

Two base graphs

17

Rate Matching

Circular buffer rate matching

- Some systematic bits removed prior to circular buffer insertion
- 4 different redundancy versions

Limited-buffer rate matching

- To handle limited UE soft-buffer size
- Determines amount of bits put into the circular buffer
- Can also be used in UL

Hybrid ARQ

- Similar to LTE but with some differences
 - Possibility for per-CBG retransmission
 - Asynchronous in DL and UL (up to 16 processes)

Control channels

Downlink L1/L2 control signaling

- Downlink Control information (DCI), transmitted on PDCCH
 - Similar usage as in LTE (scheduling, ...)
- PDCCH
 - The only type of L1/L2 control channel in NR
 - No PCFICH or PHICH (not needed in NR)
- Main difference compared to LTE
 - Possibility for beamforming
 - Not necessarily spanning full carrier bandwidth

PDCCH Processing

- Similar processing chain as for LTE
 - Polar coding
 - A Larger CRC
- Each PDCCH
 - Independently processed
 - Has its own DM-RS

Mapping to resource elements

PDCCH Monitoring

- CORESET (Control Resource Set)
 - Time-frequency region where the UE monitors for PDCCH transmission
 - Multiple CORESETs can be configured in a UE using RRC signaling
 - CORESETO obtained from MIB

Search spaces

- Set of CCEs upon which the UE tries to blindly detect PDCCH transmissions
- One PDCCH transmitted using aggregation level 1, 2, 4, 8, or 16 CCEs

CORESET

- Multiple CORESETs can be configured in one UE
 - Not necessarily located at the beginning of the slot
 - Frequency span in multiples of 6 RB
 - Time span of 1, 2, or 3 OFDM symbols

- CORESET resources can be reused for data
 - Use reserved resources mechanism

CCE-to-REG mapping

- Each CORESET has an associated CCE-to-REG mapping
 - Interleaved mapping
 - Non-interleaved mapping

DM-RS and QCL

Each PDCCH has its own DM-RS... ...but possible to configure 'wideband RS'

♠ DM-RS on every 4th subcarrier

Normal case – DM-RS per PDCCH

- Can configure TCI states (QCL relations) per CORESET
 - If none configured assume QCL with SS block

Blind Decoding

- Blind decoding of PDCCH using search spaces and DCI formats
 - Similar concept as in LTE
 - ♠ Aggregation level 1, 2, 4, 8, or 16
- Flexible configuration of when, what formats, and what aggregation levels to monitor

DCI formats

A GLOBAL INITIATIVE

- Format 0-0 uplink scheduling (fallback format)
- Format 0-1 uplink scheduling
- Format 1-0 downlink scheduling (fallback format)
- Format 1-1 downlink scheduling
- Format 2-0 slot-format indicator
- Format 2-1 preemption indictor
- Format 2-2 PUSCH/PUCCH power control
- Format 2-3 − SRS power control

Field		Format 1-0	Format 1-1
Format		•	•
identifier			
Resource	CFI		•
information	BWP indicator		•
	Frequency domain	•	•
	allocation		
	Time-domain allocation	•	•
	VRB-to-PRB mapping	•	•
	PRB bundling size		•
	indicator		
	Reserved resources		•
	Zero-power CSI-RS		•
	trigger		
Transport-	MCS	•	•
block related	NDI	•	•
	RV	•	•
	MCS, 2 nd TB		•
	NDI, 2 nd TB		•
	RV, 2 nd TB		•
Hybrid-ARQ related	Process number	•	•
	DAI	•	•
	PDSCH-to-HARQ	•	•
	feedback timing		
	CBGTI		•
	CBGFI		•
Multi-antenna	Antenna ports		•
related	TCI		•
	SRS request		•
	DM-RS sequence		•
	initialization		
PUCCH-	PUCCH power control	•	•
related	PUCCH resource indicator		•
information			

Frequency-domain resource allocation

- Resource allocation type 0 bitmap, each bit corresponds to a group of RBs
- Resource allocation type 1 − start and length of RB allocation
- The type to use is RRC configured (always 0, always 1, dynamic selection of 0/1)
 - Uplink transmissions limited to contiguous allocations in Rel-15

Time-domain resource allocation

Index into RRC-configured table

Default values specified (needed before configuration)

Time-domain allocation

Specification structure supports 'any' combination of start, length, and mapping type

Restrictions made on what UEs need to support

Allocations may not span the slot boundary

- PDSCH mapping type A
 - Start symbol: 0, 1, 2, 3 in a slot.
 - Length: 3 − 14 symbols
- PDSCH mapping type B
 - Start symbol: any
 - Length: 2, 4, 7 symbols

- PUSCH mapping type A
 - Start symbol: 0 in a slot
 - Length: 4 14 symbols
- PUSCH mapping type B
 - Start symbol: any
 - Length: 2 14 symbols

Uplink L1/L2 control signaling

- UCI on PUCCH (no simultaneous data) or PUSCH (simultaneous data, 'UCI on PUCCH')
 - Nybrid-ARQ acknowledgements, channel-state information, scheduling request
- PUCCH not necessarily at carrier edges (as in LTE)
 - DCI can indicate the resource to use for UCI
- Beamforming support: spatial relations between PUCCH and downlink signals can be configured
 - MAC-CE used to switch between different configurations
- PUCCH on Pcell (or PScell) in case of CA, similar to LTE

PUCCH formats

- Five different PUCCH formats
- All designed with low PAPR in mind, can be used irrespective of PUSCH waveform

Payload	Short (1-2 OFDM symbol)	Long (4 – 14 OFDM symbols)
≤2 bits	PUCCH format 0	PUCCH format 1
>2 bits	PUCCH format 2	PUCCH formats 3 and 4

PUCCH Timing

PUCCH timing and resources indicated in the DCI

In essence 'scheduling' of PUCCH

DM-RS	Device	Subcarrier spacing			LT	
configuration	capability	15 kHz	30 kHz	60 kHz	120 kHz	rel
Front-loaded	Baseline	0.57 ms	0.36 ms	0.20	0.18 ms	2.2
	Aggressive	0.18 - 0.29 ms	0.08 - 0.17 ms	0.30 ms		
Additional	Baseline	0.92 ms	0.46 ms	0.36 ms	0.21 ms	2.3
	Aggressive	0.85 ms	0.4 ms			

Cell search and Random access

- SS Block (SSB)
 - PSS and SSS to obtain synchronization
 - PBCH for (parts of) system information

- Main difference compared to LTE
 - Less frequent PSS/SSS/PBCH transmission (20 ms periodicity)
 - Support for beamforming
 - Minimize "always on" broadcasting of system information (possibility for "on demand" delivery)

SS Block

Subcarrier spacing for SS Block depends on frequency band

Numerology	SSB bandwidth	SSB duration	Frequency range
15 kHz	3.6 MHz	≈285 µs	FR1 < 3GHz
30 kHz	7.2 MHz	≈143 µs	FR1
120 kHz	28.8 MHz	≈36 µs	FR2
240 kHz	57.6 MHz	≈18 µs	FR2

SS Block

SS Block not necessarily at the center of the carrier (as in LTE)

- Reason: allow for a search raster sparser than the frequency raster
- Note: SS block not necessarily aligned with the resource block grid

SS block and Beam Sweeping

SS burst set

Multiple SS blocks in different beams

Frequency range	SS blocks per SS burst set
– 3 GHz	4
3 – 6 GHz	8
mm-wave	64

Random Access

Four-step random access procedure

- 1 Preamble transmission
- 2 Random-access response
- 3, 4 Contention resolution

Beam Establishment

- Different SS block time indices are associated with different RACH time/frequency occasions
 - SIB1 provides "number of SS-block time indices per RACH time/frequency occasion"
 - SSB time indices associated with RACH occasions, first in frequency, then in time within a slot, and last in time between slots

Supplementary Uplink

- System information provides
 - separate RACH configurations for 'normal' and 'supplementary' uplinks
 - threshold for carrier selection

- Measure downlink RSRP and select uplink carrier for random access
 - RSRP above threshold
 random-access on non-SUL carrier
 - RSRP below threshold
 random-access on SUL carrier

Conclusions

- NR addresses a broad range of use cases with a flexible physical layer structure
- Key enablers include
 - Ultra-lean design
 - Operability in a wide spectrum range
 - Low latency
 - Forward compatible design
 - Advanced multi-antenna techniques

For more Information:

www.3gpp.org

Search for WIDs at http://www.3gpp.org/specifications/work-plan and http://www.3gpp.org/specifications/work-plan and http://www.3gpp.org/ftp/Information/WORK_PLAN/ (See excel sheet)