Robust Header Compression (ROHC)

A step towards all-IP wireless networks

Carsten Bormann

TZI
ISSLOW: Integrated Services over slow links

Background: RTP is replacing TDM
ISSLOW: 1996 initiative for packet multimedia over serial

1) Low-speed links blocked by large frames:
 1500 Bytes == 400 ms (@ 28.8 kbit/s) ⇒ Latency!
 - Provide fragmentation, suspend/resume: RFC 2686..2689

2) Header Overhead:
 44 Bytes @ 50 frames/sec == 17.6 kbit/s
 - A) Switch to fewer, larger packets ⇒ Latency!
 - B) Provide good header compression: RFC 2507, 2508, 2509

3) Hard to reserve bandwidth with unknown header requirements
 - Obtain compressibility hints from application: RFC 3006
Header Compression: e2e vs. hop-by-hop

- RTP header is 12 bytes
 - SSRC is constant, SN and TS increase predictably
- Proposal: end-to-end header RTP header compression
 - Compress at source, decompress at destination
 - Issue: The biggest header is IP (20 bytes), and there is UDP (8 bytes)
 - Reordering makes it hard to compress very efficiently
- Header compression schemes operate hop-by-hop
 - Can use ordering on single link
 - Can compress IP header as well (20/40 bytes for IPv4/6)
 - Can compress between sources and destinations that don’t care
 - Localized complexity!
Existing Header Compression Standards

- TCP/IP header compression (VJ HC) RFC 1144
 - Compresses many IP/TCP header pairs to 4 bytes

- IP header compression (née: IPv6 HC) RFC 2507
 - Compresses successive headers identified by protocol field
 - Works on simplex links (no negotiation, no feedback)
 - Stops with UDP header (no further protocol field)

- Casner/Jacobson: CRTP RFC 2508
 - Can compress IP/UDP/RTP or just IP/UDP
 - Identify RTP by heuristics: more aggressive than IPHC
 - Requires duplex links (error feedback)
 - Still loss-less (e.g., preserves UDP checksum, if present)

- CRTP now “plugs” into IPHC RFC 2509
 - together with a PPP mapping document
Header Compression: Status end of 2000

- VJ HC has been available for a long time
- CRTP implementations now in the leading products
- PPP/IP/UDP/RTP now qualifies as an efficient method to run multimedia information over serial lines
 - no need for TDM style multiplexes any more
 - no problems with integration of data and multimedia
- Adopted for wireless
 - 3GPP references RFC2507 in R ’99
Enter Wireless: The need for ROHC

◆ CRTP Issue: Robustness
 – Delta coding works best on loss-free links
 – One loss ➞ inconsistency!
 – CRTP repair mechanism (CONTEXT-UPDATE) needs a round-trip

◆ Loss propagation
 – Losing one packet causes losing a round trip’s worth
 – Wireless: high error rate, large RTT

◆ Damage propagation
 – Not really an issue for PPP (16-bit or 32-bit CRC)
 – Higher spectrum efficiency calls for shorter checksums on 3G
 – Residual bit errors create long strings of bad packets
 – RFC2508 not appropriate for high-delay, high-loss links
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vers=4</td>
<td>version number</td>
</tr>
<tr>
<td>hlen</td>
<td>header length</td>
</tr>
<tr>
<td>TOS byte</td>
<td>Type of Service byte</td>
</tr>
<tr>
<td>total length</td>
<td>total length of the header in bytes</td>
</tr>
<tr>
<td>IP identification</td>
<td>source IP address</td>
</tr>
<tr>
<td>flags</td>
<td>flags byte</td>
</tr>
<tr>
<td>fragment offset</td>
<td>fragment offset</td>
</tr>
<tr>
<td>time to live</td>
<td>time to live</td>
</tr>
<tr>
<td>protocol</td>
<td>protocol</td>
</tr>
<tr>
<td>header checksum</td>
<td>header checksum</td>
</tr>
<tr>
<td>source IP address</td>
<td>source IP address</td>
</tr>
<tr>
<td>destination IP address</td>
<td>destination IP address</td>
</tr>
<tr>
<td>source port number</td>
<td>source port number</td>
</tr>
<tr>
<td>destination port number</td>
<td>destination port number</td>
</tr>
<tr>
<td>UDP length</td>
<td>length of the UDP header in bytes</td>
</tr>
<tr>
<td>UDP checksum</td>
<td>UDP checksum</td>
</tr>
<tr>
<td>V=2</td>
<td>version number</td>
</tr>
<tr>
<td>P</td>
<td>padding byte</td>
</tr>
<tr>
<td>X</td>
<td>extension byte</td>
</tr>
<tr>
<td>CC</td>
<td>contribution count</td>
</tr>
<tr>
<td>M</td>
<td>more flag</td>
</tr>
<tr>
<td>PT</td>
<td>padding type</td>
</tr>
<tr>
<td>RTP sequence number</td>
<td>RTP sequence number</td>
</tr>
<tr>
<td>timestamp</td>
<td>timestamp</td>
</tr>
<tr>
<td>synchronization source (SSRC) identifier</td>
<td>synchronization source (SSRC) identifier</td>
</tr>
<tr>
<td>contributing source (CSRC) identifiers</td>
<td>contributing source (CSRC) identifiers</td>
</tr>
</tbody>
</table>
no change + redundant fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>vers=4</td>
<td>0</td>
</tr>
<tr>
<td>hlen</td>
<td>0-4</td>
</tr>
<tr>
<td>TOS byte</td>
<td>5</td>
</tr>
<tr>
<td>total length</td>
<td>5-31</td>
</tr>
<tr>
<td>IP identification</td>
<td>32-47</td>
</tr>
<tr>
<td>flags</td>
<td>48</td>
</tr>
<tr>
<td>fragment offset</td>
<td>49-55</td>
</tr>
<tr>
<td>time to live</td>
<td>56</td>
</tr>
<tr>
<td>protocol</td>
<td>57-63</td>
</tr>
<tr>
<td>header checksum</td>
<td>64-71</td>
</tr>
<tr>
<td>source IP address</td>
<td>72-95</td>
</tr>
<tr>
<td>destination IP address</td>
<td>96-127</td>
</tr>
<tr>
<td>source port number</td>
<td>128-137</td>
</tr>
<tr>
<td>destination port number</td>
<td>138-147</td>
</tr>
<tr>
<td>UDP length</td>
<td>148</td>
</tr>
<tr>
<td>UDP checksum</td>
<td>149-155</td>
</tr>
<tr>
<td>RTP sequence number</td>
<td>156-160</td>
</tr>
<tr>
<td>RTP timestamp</td>
<td>161</td>
</tr>
<tr>
<td>synchronization source (SSRC) identifier</td>
<td>162-167</td>
</tr>
<tr>
<td>contributing source (CSRC) identifiers</td>
<td>168-175</td>
</tr>
</tbody>
</table>
Basic Function

Two kinds of header fields:

◆ **Essentially constant:**
 - Context-identifying (IP addresses, ports, protocol…)
 - Rarely changing (TTL, TOS, Payload type)

◆ **Dynamic (“the Five Fields”):**
 - IP ID: Usually increments by 1 (or 256)
 - UDP checksum: Essentially random (or constantly zero)
 - RTP Marker bit: set once per talkspurt
 - SN (RTP sequence no): increments by 1
 - TS (RTP timestamp): increments by $TS_{ \text{STRIDE}}$
 ▼ (or more between talkspurts)
Compressor states

Static context established

Values of Five Fields & strides established

IR

FO

SO

Change in “non-changing” field

Five fields do not change as anticipated. (E.g., start of talk spurt)
ROHC robustness (1)

- Do not use delta coding!
 - LSB coding (modulo) as a robust alternative
 - E.g., 4 to 6 bits are sufficient for the SN
 - Allow some variable-length coding for unusual cases

- Instead, use SN as “kernel field”
 - Send it with every packet
 - Losses or pre-compressor reorderings are apparent!

- Other fields: express as $f(SN)$
 - Characteristics of f are established in FO/SO state
 - E.g., for time stamp: $f(SN) = TS_{STRIDE} \times SN + TS_{OFFSET}$ (simplified)
ROHC robustness (2)

How to ensure state synchronization in the presence of losses and residual bit errors?

- **A) Saturation (as with RFC2507): “unidirectional mode”**
 - Send a CRC of \textit{uncompressed} packet with each packet
 - Repeat changes often enough (limited saturation)
 - CRC catches the rest (1 RTT loss propagation!)
 - CRC also catches many residual bit errors
 - ▼ Ambiguity

- **B) Optimism and Check: “optimistic mode”**
 - Do not assume state change at decompressor until acknowledged
 - ▼ 1 RTT of less efficient operation
 - Variant: Can play optimistic while waiting for ACK

- **C) Pessimism and Acknowledgements: “reliable mode”**
ROHC framework

- Multiple contexts per channel (CID = context ID)
- Each context in use is bound to a profile
 - Set up by IR (initialization and refresh) packets
 - Currently defined: uncompressed, RTP, UDP, ESP
- Can define new profiles later
- Common packet types:
 - Short CID-extender
 - Feedback
 - IR/IR-DYN common prefix (must work on any context)
 - Segmentation protocol and padding
ROHC: The Result

◆ Can compress most headers to 1 byte

 0 1 2 3 4 5 6 7

 | 0 | SN | CRC |

 +====+=====+=====+====+

 – Unidirectional and optimistic mode:

 +====+=====+=====+====+

 | 0 | SN | CRC |+===+===+===+===+===+===+===+===+

 – Reliable mode:

 +====+=====+=====+====+

 | 0 0 | SN | CRC |+===+===+===+===+===+===+===+===+

 – Robust against up to 12 (or >30) losses in sequence

 – Measurements indicates long loss trains are rare
 – Optimized for typical 3G style wireless voice (or video) links
 ▼ (100 ms RTT, 20 ms frames, < 200 ms handover, ~ 1 s avg talkspurt)
 – Good transparency

◆ Support for IPv4/IPv6, most extension headers, IPSEC, GRE

◆ Draft –07 out this week ➔ WG/IETF last call
Future

◆ 0-byte solutions:
 – Use the tight radio frame timing to indicate SN/TS progress
 – Needs separate channel for non-SO packets
 – Gets rid of uninspired “header stripping” proposals
 – Requires buffering/resequencing at compressor

◆ ROHC TCP:
 – The requirements for robustness are maybe less stringent
 ▼ Can do retransmission at link layer (see PILC)
 – Less stringent time constraints on development
 – New problems: Options like SACK, timestamps
All IP Wireless

Internet — WLAN — UMTS