

Initial thoughts on LTE Advanced for 3GPP Release 10

Eiko Seidel, CTO LTE World Summit, Berlin, May 19th 2009

Background

Industry: IT Telecommunication

Headquarter: Munich, Germany

Founded: September 2004

- Worldwide business, profitable from day one
- Spin off from Munich University of Technology
 - First real-time simulations GPRS/UMTS for Siemens in 1999
 - Strategic collaboration Nokia Siemens Networks
- Business areas
 - Consulting LTE research, prototyping, simulation, standardisation
 - Product LTE eNB protocol stack development and emulation
- Staff
 - 20 highly qualified engineers at office in Munich, Germany
 - Development resources in Pakistan and China

Examples LTE development

World First Live LTE Demo (2006) Collaboration Siemens Networks

LTE eNB Protocol Stack Licensing, first customer 2008

Advanced Mobile Radio Emulator LTE/LTE-A Collaboration Nokia Siemens Networks

Multi-radio access testbed First inter-RAT handover 2009

Outline

- ▶ Background 4G and ITU-R
- LTE Advanced Standardisation
- ▶ LTE Advanced Technologies
 - Carrier aggregation
 - MIMO technologies
 - Cooperative base stations
 - Relaying

What is 4G really?

LTE?

WiMAX?

?

ITU-R Standardization

- ITU = International Telecommunication Union
- ▶ ITU-R = ITU Radio Communication Sector

Mission:

 ensure interference free operations of radio communication systems by means of radio regulations and regional agreements

(Interference requirements, global harmonization)

- radio standardization establishes 'Recommendations' intended to assure the necessary performance and quality (High level performance requirements!)
- examination of frequency assignment notices submitted by administrations for inclusion in the formal coordination procedures (Frequency assignments!)

IMT2000-3G and IMT Advanced-4G

ITU-R Work on 4G (IMT Advanced)

- ▶ ITU-R Foundation Activities Have Led The Way:
 - "Vision" work for IMT-Advanced began in 2000
 - "Spectrum" work for IMT-Advanced began in 2003
 - "Process" work for IMT-Advanced began in 2006
- ▶ ITU-R Future Spectrum Decisions Are Important Aspect:
 - World Radio Conference (WRC-07) took decisions in November 2007 impacting 3G and beyond 3G (that is *IMT-2000*, *IMT-Advanced* and/or collectively – "*IMT"*)
- ► ITU-R issued a Circular Letter to invite submission of candidate Radio Access Technologies. Furthermore IMT Advanced baseline requirements have been agreed by ITU-R WP5 in 2008
- ITU-R and Industry is partnering in the next steps:
 - "Technology" work for IMT-Advanced began end of 2008
- After proposal evaluation the ITU-R Technology Specification
 Recommendations on IMT-Advanced is expected year end 2010

Important Decisions at WRC'07

- ► IMT-2000 was changed to IMT (IMT = IMT-2000 and IMT-Advanced)
- In total around 400 MHz identified to IMT
- Out of this 136 MHz that was globally allocated to IMT
 - Bands; 450-470 MHz, 790-806 MHz, 2300-2400 MHz
- Additional low frequency bands for wide area coverage
 - UHF Bands 698-790 MHz, 790-806 MHz, 806-862 MHz
 - Attractive to operators for coverage extentions
- 3400-3600 MHz band allocated to mobile service in some countries in all the three Regions
 - Band will be allocated to UMTS/LTE pretty soon
 - 3GPP will start working on specification
 - Attractive for operators to improve broadband data rates with small size cells and low mobility users
- ▶ 3600-3800 MHz is identified as a possible additional or alternative frequency band, might get available from 2012

LTE Advanced Standardisation and Requirements

3GPP Schedule towards 4G

- Harmonized schedule between 3GPP and ITU
- ▶ LTE Release 9 = minor improvements
- LTE Release 10 = major changes for LTE Advanced

State of standardization of LTE Advanced

- Work on requirements is completed
 - LTE requirements are the baseline
 - TS36.913 Requirements for Advancements for E-UTRA
 - 3GPP inputs requirements to ITU
- New technical report was endorsed as Version 1.0.0
 - TR 36.814 Further Advancements for E-UTRA Physical Layer
 - First submission to ITU in June, final submission Sept. 2009
- Evaluation methodology agreed
- First principle technical decisions have been taken
- Radio Access Network working groups, mainly Physical Layer, continuously spend time on LTE Advanced

3GPP LTE-A Requirements

- LTE-A must support the requirements of IMT-Advanced and shall have same or better performance then LTE
- Peak data rate (peak spectrum efficiency)
 - Downlink: 1 Gbps, Uplink: 500 Mbps
- No specific targets for cell edge user throughput, average user throughput or capacity (spectrum efficiency) have been defined
- Peak spectrum efficiency
 - Downlink: 30 bps/Hz, Uplink: 15 bps/Hz
- Somewhat higher requirement for C-plane latency
- Same requirements as LTE for mobility, coverage, Uplane latency, synchronization, spectrum flexibility etc.

LTE Advanced Technology Proposals

Can we be more radio efficient?

- ▶ LTE is a well designed very advanced system
- Radio functions are very fast, fully adaptive
- Access scheme OFDMA/SC-FDMA
 - No Intracell Interference in uplink and downlink
 - Scheduler exploits channel in time and frequency
- MIMO antenna technology
 - Exploits diversity, beam forming and spatial multiplexing gain
- Shared channel gives instantaneous access to high rate
- Very high number of "always on" users
- Link performance operates close to the Shannon limit
- → No major technology breakthrough foreseen yet
- → LTE Advanced will be a Evolution
- → Improving SINR in cellular system can be the only driver

Technology Proposals

- Bandwidth Aggregation
- MIMO Enhancements
- Cooperative Multi-site Transmission
- Relays and Repeater

Scalable bandwidth/carrier aggregation

- OFDM provides means to increase bandwidth
- Backwards compatibility must be ensured
- Scheduler must consider a mix of terminals
- Used bandwidth might not be contiguous

Challenges for 100 MHz terminal

- Potential of commercial-level RF filter
 - Effective bandwidth range
- Potential of commercial-level ADC
 - Sampling rate and quantization resolution
- Decoding complexity
 - Channel decoding and soft buffer size

Multi-carrier operation

- Resource Allocation, MIMO, Link Adaptation, HARQ etc will be performed per carrier
 - Minimum changes are required for the system
 - → Improved performance (better link adaptation and HARQ)
- No changes to higher layer protocols are required
- Scheduler needs to operate across the whole band

Contiguous alloation Non contiguous allocation Scheduler Scheduler HARQ HARQ HARQ **HARQ** HARQ HARQ **HARQ** PHY PHY PHY PHY PHY PHY

Bandwidth allocation

- Asymmetric bandwidth allocation
 - Traffic is still asymmetric between DL & UL
 - Paired spectrum might not be symmetric

- Flexible duplex distance
 - Additional signalling on the broadcast channel required

MIMO enhancements

Improved MIMO transmission

- Gain for additional diversity becomes smaller
 - Anyway not always wanted e.g. frequency selective scheduling
- Gain from spatial multiplexing only is questionable
 - limited to hotspot and indoor environments (small cells, scattered propagation environment, very low user mobility)
 - Still the only way to achieve the very high peak data rates
- Spatial multiplexing in general needs high SNR regions
- → Use of beam forming combined with spatial multiplexing within different beams could be most beneficial

MIMO Enhancements for LTE-Advanced

- Downlink MIMO transmission
 - 4 UE receive antennas and 4x4 MIMO could become baseline
 - Downlink peak data rates achieved by the use of 8x8 MIMO (reference signals for 8 antennas required)
- Uplink MIMO transmission
 - 2 UE transmit antennas and 2x2 MIMO could become baseline
 - Uplink peak data rates achieved by the use of 4x4 MIMO
- Increase peak data rate, but also coverage and capacity

Coordinated multi-point transmission (CoMP)

Inter-cell interference

- ▶ Full frequency re-use is beneficial, but difficult to handle
- Slow Interference coordination is already supported

Orthogonality		UMTS	LTE	LTE-A
Orthogonal Intra-cell	DL	Yes, partly	Yes	Yes
	UL	No	Yes	Yes
Orthogonal Inter-cell	DL	No	No	Yes, partly?
	UL	No	No	Yes, partly?

- Inter-cell interference is key to increase system capacity
- In case fast eNB connections are available (e.g. fiber) fast coordination is no fairy tale anymore
- Control might be centralized (RNC like) or not

Cooperative base stations

- Different technologies are possible
 - Coordination of scheduling
 - Multi-site beam forming
 - Information exchange for inter cell interference cancellation
- Different level of information sharing (no, partial and full availability)
 - Data availability
 - Channel knowledge
 - Scheduling decisions
- Might be used for cell edge users only

Coordinated Multi-site Beam Forming

- Interference reduction by coordinated scheduling
- ▶ Enhance the signal quality particularly of cell-edge UE
- Reduces interference caused to/by other UEs
 - → Coordination considering Direction of Arrival
- ▶ No impact on radio standardization, just X2 interface
- Some added load on backhaul (forwarding of signalling)

Combined Multi-site Beam Forming

- Signal strengthening by joint transmission
- eNBs jointly schedule data to the UEs using different weights
- Increase of backhaul load (data forwarding), but beneficial over air
- UE specific reference signals must be used
 - Same ID from different eNBs possible
 - Reporting of a joint channel state possible
- UE might actually be unaware of network cooperation

Multi-cell MIMO

- Increased throughput by spatial multiplexing from multiple sites
- ▶ eNBs use same resource to same UEs, transmitting multiple streams
- ▶ Independent channels → less co-channel interference
 - Better cell edge performance (higher data rates possible)
 - Can be used in UL and DL
- Increased signalling overhead due to required feedback information
- UE synchronization to more than one cell and synchronized network is required

Relaying

Introduction Repeater

- Coverage problem increases for high spectrum
- Significant capacity increase can only be archived be smaller cell sizes

Introduction repeater (layer 0/1 relay)

- Used for coverage extension or cover isolated areas
- Amplify-and-forward devices based on analog signal
 - Desired signal can not be separated
 - → interference and noise is amplified as well
 - Immediate forwarding is done (within the CP length)
 - → Neglectable delay, looks like multipath
 - Strong RF isolation required to minimize the leakage (larger device size, higher hardware and installation cost)
 - Repeater gain is at least limited by the RF isolation
- "Smart" repeater use power control or self cancellation
- Alternatively signal can be forwarded at other frequency

Decode and Forward (layer 2 relay)

- ▶ Relay Nodes (RN) are introduced at cell edge
- Rx and Tx times require some multiplexing
 - Time Division or Frequency Division Duplex
 - coordination/cooperation among nodes required
- Decoding, scheduling and re-encoding
- Interference co-ordiantion needed
- Delay of a few subframes
- Clear advantage compared to layer 1 Relations repeater must still be seen

MME/Gateway

Self Backhauling (layer 3 relay)

- No new nodes defined, but new cells are created
- Backhaul via LTE technology; X2 protocol reused or S1
- Same or different spectrum could be used
- High spectral efficiency needed for backhaul
- Spatial coordination with beams possible
- Signalling overhead from encapsulation
- No need to change specification
- Relay as complex as Home NB
- Only solution for group mobility scenario

X2 protocol

MME/Gateway

Cooperative Relaying

- Allows soft combining of several path
- Works simple with L1 relay that just forwards the data
- Tight coordination required if used with L2 or L3 relaying
 - Delay of S1 would be required compare to S2 and S3

Conclusion

- "LTE Advanced" = IMT Advanced = 4G
 - Data rates up to 1Gbps in stationary scenarios
 - Coverage enhancements for high frequency bands
- LTE Advanced will be a smooth evolution of LTE
 - Numerology and access technologies will be the same
- Bandwidth up to 100MHz supported
 - Contiguous and non-contiguous carrier aggregation
- New technologies are being proposed
 - Enhanced MIMO, cooperative transmission, relaying etc.
- 3GPP will contribute to ITU to standardize 4G
- Work required on PHY/MAC and network architecture
- Optimization for local area scenarios

Contact

Nomor Research GmbH Brecherspitzstr. 8 81541 München Germany

http://www.nomor.de
seidel@nomor.de

Tel: +49 89 9789 8000

Fax: +49 89 9789 8010

