

3GPP Security: LTE/SAE and Home (e)NB

Charles Brookson
ETSI OCG Security Chairman

with special thanks to

Valtteri Niemi
Nokia Corporation
3GPP SA3 Security Chairman

Dionisio Zumerle

ETSI

3GPP SA3 Security Secretary

Introduction

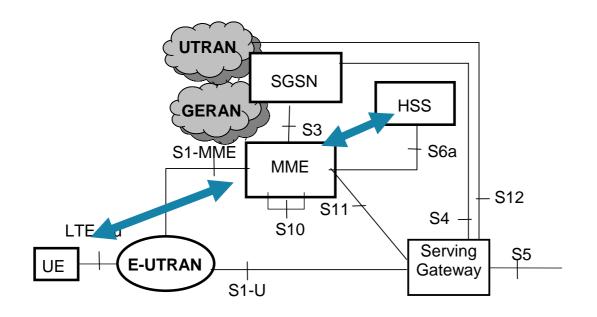
- ☐ 3GPP SA Working Group 3 (3GPP SA3)
 - > specifying security mechanisms and functions
 - > in 3G UMTS, SAE/LTE systems and beyond
- ☐ ETSI: one of the founding Standards Developing Organizations of 3GPP
- ☐ ETSI OCG Security: transversal security co-ordination ad hoc group of ETSI

LTE Summit - Berlin, Germany - 18-20 May 2009

SAE/LTE implications on security

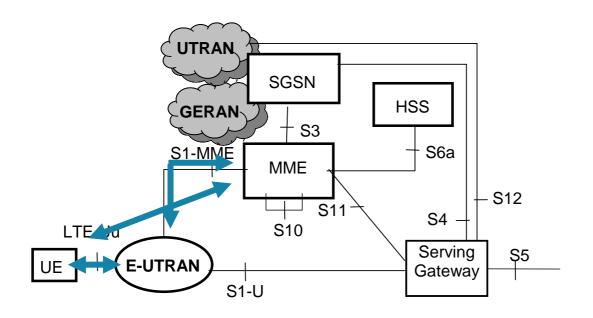
- □ Security implications due to
 - > Flat architecture: RAN protocols terminate in eNB
 - Interworking with legacy and non-3GPP networks
 - > Allowing eNB placement in untrusted locations
 - New business environments with less trusted networks involved
 - > Trying to keep security breaches as local as possible

- □ Extended Authentication and Key Agreement
- More complex key hierarchy
- More complex interworking security
- Additional security for eNB (compared to NB/BTS/RNC)

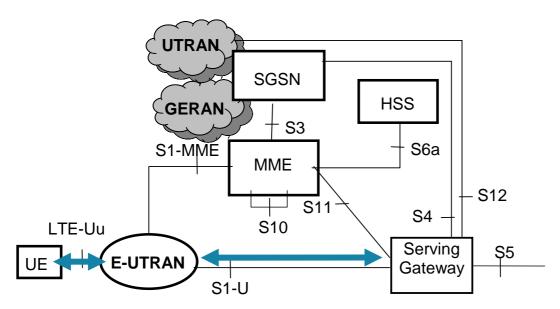


Security functions

- Authentication and key agreement
 - UMTS AKA re-used for SAE
 - > SIM access to LTE is explicitly excluded (USIM R99 onwards allowed)
- □ Signalling protection
 - ➤ For core network (NAS) signalling, integrity and confidentiality protection terminates in MME (Mobility Management Entity)
 - ➤ For radio network (RRC) signalling, integrity and confidentiality protection terminates in eNodeB
- ☐ User plane protection
 - Encryption terminates in eNodeB
 - > Separate protection in on network interfaces
- Network domain security used for network internal interfaces


Authentication and key agreement

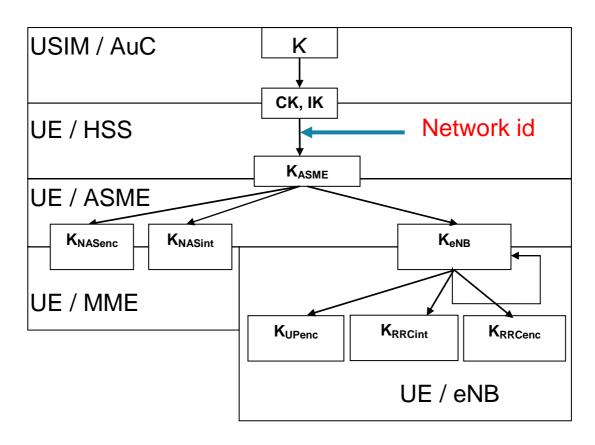
- ☐ HSS generates authentication data and provides it to MME
- □ Challenge-response authentication and key agreement procedure between MME and UE


Confidentiality and integrity of signalling

- □ RRC signalling between UE and E-UTRAN
- NAS signalling between UE and MME
- S1 interface signalling
 - protection is not UE-specific
 - optional to use

User plane confidentiality

- □ S1-U protection is not UE-specific
 - > (Enhanced) network domain security mechanisms (based on IPsec)
 - Optional to use
- ☐ Integrity is not protected for various reasons, e.g.:
 - > performance
 - limited protection for application layer

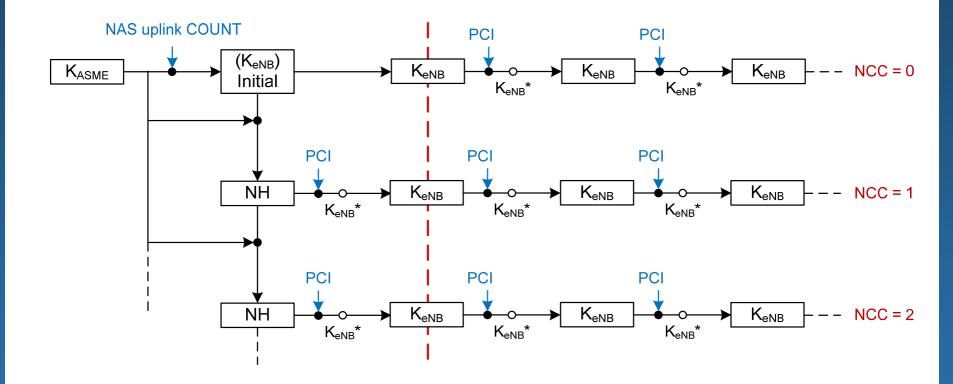


Crypto-Algorithms

- ☐ Two sets of algorithms
 - > 128-EEA1 and 128-EIA1 (identical to UEA2 and UIA2 for UMTS)
 - > AES and SNOW 3G chosen as basis
 - Principle: should be as different from each other as possible
- ☐ Rel-99 USIM is sufficient
 - > Key length 128 bits
 - included possibility to add 256-bit keys
 - Deeper key hierarchy than UMTS
 - > (one-way) key derivation function needed
- Public and open
 - Can be downloaded to look at
 - > Available from ETSI web site and GSMA web site

Key hierarchy in LTE/SAE

Cryptographic network separation


- ☐ Authentication vectors are specific to the serving network
 - → AV's usable in UTRAN/GERAN cannot be used in EPS
- AV's usable for UTRAN/GERAN access cannot be used for E-UTRAN access
 - Solution by a "separation bit" in AMF field
- ☐ On the other hand, Rel-99 USIM is sufficient for EPS access
 - → ME has to check the "separation bit" (when accessing E-UTRAN)
 - → EAP-AKA' created in IETF

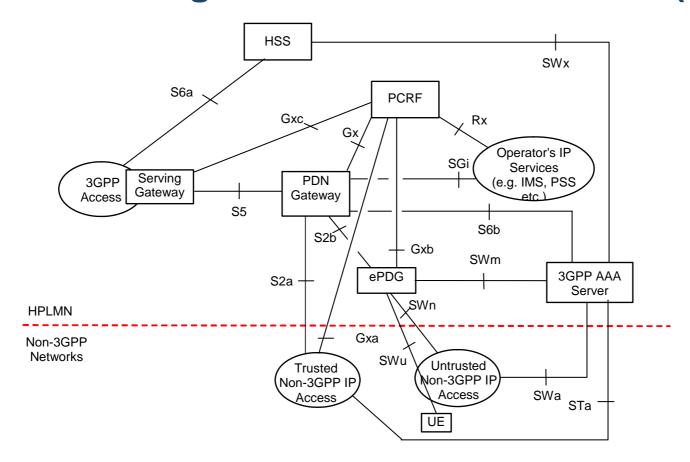
Handovers without MME involvement

- ☐ Handovers are possible directly between eNB's
 - > for performance reasons
- If keys would be passed as such, all eNB's in a "HO chain" would know all the keys → one compromised eNB would compromise all eNB's in the "HO chain"
- Countermeasures:
 - One-way function used before key is passed (Backward security)
 - MME is involved after the HO for further key passes (Forward security, effective after two hops)
 - When MME involved already during the HO, Forward security is effective already after one hop

K_{eNB} derivations

Interworking with UTRAN/GERAN (1/2)

- ☐ UE may be registered in both SGSN and MME simultaneously
 - → when moving from one system (source) to the other (target) both native content (keys created earlier in the target system) and
 - mapped content (converted from the keys in the *source* system) may exist
 - > Note: native keys only for Rel-8 SGSN, not for legacy SGSN



Interworking with UTRAN/GERAN (2/2)

- □ Idle mode transition
 - From E-UTRAN to UTRAN: either *mapped* or *native* keys are used (depending on the identity used in *Routing Area Update Request*)
 - From UTRAN to E-UTRAN: *native* keys are used *but* an exceptional case exists also
- ☐ Handover
 - > From E-UTRAN to UTRAN: mapped keys are used
 - From UTRAN to E-UTRAN: *mapped* keys are used *but* it is possible to activate the *native* keys after HO completed (using *key-change-on-the-fly* procedure)

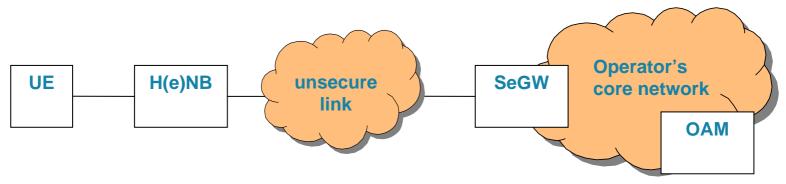
Inter-working with non-3GPP networks (1/2)

Extract from TS 23.402 (one of several architecture figures)

Inter-working with non-3GPP networks (2/2)

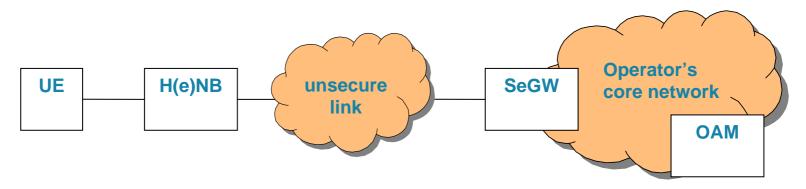
- □ Three options for mobility between 3GPP and non-3GPP networks:
 - Proxy Mobile IP: no user-specific security associations between the Proxy and Home Agent
 - > Client MIPv4: tailor-made security mechanisms are used
 - > Dual Stack MIPv6: IPsec with IKEv2 is used between UE and HA
- □ IPsec tunnel (with evolved Packet Data Gateway) is used in case the non-3GPP network is untrusted by the operator (of EPS network)
- □ Authentication is run by EAP-AKA or EAP-AKA' procedures, in both cases based on USIM

LTE Summit - Berlin, Germany - 18-20 May 2009



H(e)NB Security specification work

- ☐ TR 33.820
 - > Technical Report (informative)
 - > Approved in March 2009
 - > Study on Security of Home (e) Node B
- ☐ TS 33.xyz
 - > Technical Specification (normative)
 - Currently under development
 - > 3GPP Security Aspects of Home NodeB and Home eNodeB


Home (e)NB Security architecture (1/2)

- □ CSG (Closed Subscriber Group)
 - group of subscribers permitted to access one or more cells of the PLMN with restricted access ("CSG cells")
- Hosting party
 - > party hosting H(e)NB and having contract with PLMN operator
- Hosting Party Module (HPM)
 - module holding credentials for authentication of hosting party
- Security Gateway
 - element at the edge of the core network terminating security association(s) for backhaul link between H(e)NB and core network
- □ Trusted Environment (TrE)
 - > logically separate entity and set of functions/resources within H(e)NB
 - > trustworthy environment to executesoftware and store sensitive data (e.g. PS keys)

Home (e)NB Security architecture (2/2)

- □ Air interface between UE and H(e)NB backwards compatible with UTRAN
- ☐ H(e)NB access operator's core network via a Security Gateway (SeGW)
 - > Backhaul between H(e)NB and SeGW may be unsecure
- □ SeGW represents operator's core network
 - > To perform mutual authentication with H(e)NB
 - Mutual authentication may need support of authentication server or PKI
- Security tunnel established between H(e)NB and SeGW
 - > to protect information transmitted in backhaul link
- Secure communication required for OAM

Threats

- □ Compromise of HeNB credentials
 - > e.g. cloning of credentials
- Physical attacks on HeNB
 - > e.g. physical tampering
- ☐ Configuration attacks on HeNB
 - > e.g. fraudulent software updates
- Protocol attacks on HeNB
 - > e.g. man-in-the-middle attacks
- ☐ Attacks against the core network
 - > e.g. Denial of service
- Attacks against user data and identity privacy
 - > e.g. by eavesdropping
- □ Attacks against radio resources and management

All threats addressed by countermeasures in Technical Report 33.820

Authentication

CC	onsists of:
	H(e)NB identity authentication
	Trusted Environment (TrE) identity authentication
	H(e)NB device identity and TrE identity binding
	The H(e)NB integrity verification
Tw	vo separate concepts of authentication:
	Mutual authentication of H(e)NB and operator's network (mandatory)
	H(e)NB Identity authenticated by network
	 credentials stored in TrE in H(e)NB
	identity of operator's network authenticated by H(e)NB
	Authentication of hosting party by operator's network (optional)
	> credentials contained in a separate Hosting Party Module (HPM) in H(e)NB
	bundled with the device authentication (one step)
	Authentication either by certificates or EAP-AKA
	Protocol used: IKEv2

Other security mechanisms

- **☐** Device Integrity Check
- Location Locking
 - Location identification (UE reporting/Surrounding Cell or Local)
 - Location authentication and authorization
 - Solutions
 - IP address based
 - Macro-cell/UE reporting based
 - (A)GPS based
 - Combination of the above
- Access Control Mechanism
 - > ACL for Pre-R8 UE accessing HNB
 - CSG for H(e)NB
- □ OAM
 - > Hop-by-hop
 - > End-to-end
- Clock Synchronization
 - > Based on backhaul link between H(e)NB and SeGW
 - > Based on security protocol of clock synchronization protocol

Summary and Conclusions

Summary and Conclusions

■ SAE/LTE security

- New architecture and business environment require enhancements to 3G security
- > Radio interface user plane security terminates in base station site
- Cryptographic separation of keys
- Forward/backward security in handovers
- Different security mechanisms in many inter-working cases with both 3GPP and non-3GPP access networks

Home (e)NB security

- Device Authentication
 - Solutions based on either EAP-AKA or Certificates adequate for pre-R8 deployments
 - Certificate-based solution, coupled with TrE, is mandatory part of Release 9
- > HPM Authentication
 - · Optional to implement and EAP-AKA based
- Authentication Protocol
 - IKEv2

Thank you!

For more information:

www.etsi.org

www.3gpp.org