Enhanced High-Speed Packet Access
HSPA+

- Background: HSPA Evolution
- Higher data rates
- Signaling Improvements
- Architecture Evolution/ Home NodeB
HSPA+ (HSPA Evolution) Background

- For operators deploying High Speed Packet Access (HSPA*) now, there is the need to continue enhancing the HSPA technology
 - 3GPP Long Term Evolution (LTE) being standardized now, but not backwards compatible with HSPA
 - 223 HSDPA operators in service in 93 countries (Oct. 08)**
 - Investment protection needed for current HSPA deployments

- HSPA+ effort introduced in 3GPP in March 2006
 - Initiated by 3G Americas & the GSMA
 - HSPA+ defines a broad framework and set of requirements for the evolution of HSPA
 - Rel.-7: improvements mainly in downlink
 - Rel.-8: further uplink enhancements

*HSPA is the combination of HSDPA and HSUPA
**http://www.3gamericas.org/pdfs/Global_3G_Status_Update.pdf
HSPA+ Goals

Based on the importance of the HSPA-based radio network, 3GPP agreed that HSPA+ should:

- Provide **spectrum efficiency, peak data rates & latency** comparable to LTE in 5 MHz
 - Exploit full potential of the CDMA air interface before moving to OFDM
- Allow operation in an **optimized packet-only** mode for voice and data
 - Utilization of shared channels only
- Be **backward compatible** with Release 99 through Release 6
- Offer a **smooth migration path to LTE/SAE** through commonality, and facilitate joint technology operation
- Ideally, only need a simple infrastructure upgrade from HSPA to HSPA+
- HSPA evolution is two-fold
 - Improvement of the radio
 - Architecture evolution

Aggressive HSPA+ goals for enhancing HSPA
Higher Order Modulations (HOMs)

- **Uplink**
 - BPSK: 2 bits/symbol
- **Downlink**
 - 16QAM: 4 bits/symbol
 - 64QAM: 6 bits/symbol

- Increases the peak data rate in a high SNR environment
- Very effective for micro cell and indoor deployments

HOMs increase the number of bits/symbols transmitted, thereby increasing the peak rate
The use of Higher Order Modulations significantly increases the theoretical peak rates of HSPA.

Provides data rate benefits for users in very good channel conditions (e.g. quasi-static or fixed users close to the cell center, lightly loaded conditions).

* Part of 3GPP Rel-8

**Using 2 resource blocks for PUCCH and max prime factor restriction = 5
HSDPA 64-QAM – Micro Cell / Hotspot Deployment

~30% throughput increase for top 10% users

Key assumptions: 500m inter-site distance and 6dB attenuation from non-serving cells (models site-to-site isolation)

Results from 3GPP R1-063415

2 Rx Antenna, Equalizer

HOMs provide significant improvements for “hot spot” deployments
Multiple Antenna Techniques

- **Spatial Division Multiple Access (SDMA) or Beamforming**
 - Different data streams sent to different users using the same codes
 - Improves throughput even in low SINR conditions (cell-edge)
 - Already supported in Release 5/6, works with single antenna UEs

- **Spatial Multiplexing (SM) → SU-MIMO**
 - Multiple data streams sent to the same user
 - Significant throughput gains for UEs in high SINR conditions
 - *Double Transmit Adaptive Array (D-TxAA) was adopted for Rel-7 FDD and is based on dual codeword SU-MIMO*

- **Closed Loop Transmit Diversity (CLTD)**
 - Improves reliability on a single data stream
 - Fall back scheme if channel conditions do not allow SM
Fixed Beam Switching (FBS)

- Spatial partitioning of the sector area by help of a fixed number of beams
- S-CPICH (per beam) is introduced for improving UE channel estimation
- Beam specific secondary scrambling codes can be applied → code limitation preventable

From UL

Selection

Fixed spatial filters, e.g. Butler-Matrix or baseband implementation
Adaptive Beamforming/ Beam Pointing (BP)

- User specific antenna patterns are formed depending on a pre-defined optimisation criteria, e.g.
 - $MaxSINR$
 - $MaxSNR$

- $maxSNR$ significantly outperforms $maxSIR$

- For a low angular spread BP is nearly equivalent to $maxSNR$
The MIMO channel consists of M Tx and N Rx antennas. Each Tx antenna transmits a different signal. The signal from Tx antenna j is received at all Rx antennas i. Channel capacity can increase linearly.

$$C_{\text{MIMO}} \leq \min\{M,N\} \cdot C_{\text{SISO}}$$
MIMO in HSPA+

Release 7 MIMO for HSDPA
- 2x2
- D-TxAA, Mode 1
- HS-DPCCH-only feedback (CQI and PCI reported on HS-DPCCH)
- PARC Algorithm with support for dual stream and single stream (different from Tx diversity i.e.; change per subframe and no antenna verification)
MIMO Performance Benefits

- 2x2 D-TxAA MIMO scheme doubles peak rate from 14.4 Mbps to 28.8 Mbps
- 2x2 D-TxAA MIMO provides significant experienced peak, mean & cell edge user data rate benefits for isolated cells or noise/coverage limited cells
- 2x2 D-TxAA MIMO provides 20%-60% larger spectral efficiency than 1x2

Note: All gains normalized to Near Cell Center SISO Data Rate

MIMO provides significant data rate and spectral efficiency benefits for isolated, noise limited cells
HSDPA – UE Physical Layer Capabilities

<table>
<thead>
<tr>
<th>HS-DSCH Category</th>
<th>Maximum number of HS-DSCH multi-codes</th>
<th>Supported Modulation Formats</th>
<th>Minimum inter-TTI interval</th>
<th>Maximum MAC-hs TB size</th>
<th>Total number of soft channel bits</th>
<th>Theoretical maximum data rate (Mbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>5</td>
<td>QPSK, 16QAM</td>
<td>3</td>
<td>7298</td>
<td>19200</td>
<td>1.2</td>
</tr>
<tr>
<td>Category 2</td>
<td>5</td>
<td>QPSK, 16QAM</td>
<td>3</td>
<td>7298</td>
<td>28800</td>
<td>1.2</td>
</tr>
<tr>
<td>Category 3</td>
<td>5</td>
<td>QPSK, 16QAM</td>
<td>2</td>
<td>7298</td>
<td>28800</td>
<td>1.8</td>
</tr>
<tr>
<td>Category 4</td>
<td>5</td>
<td>QPSK, 16QAM</td>
<td>2</td>
<td>7298</td>
<td>38400</td>
<td>1.8</td>
</tr>
<tr>
<td>Category 5</td>
<td>5</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>7298</td>
<td>57600</td>
<td>3.6</td>
</tr>
<tr>
<td>Category 6</td>
<td>5</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>7298</td>
<td>67200</td>
<td>3.6</td>
</tr>
<tr>
<td>Category 7</td>
<td>10</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>14411</td>
<td>115200</td>
<td>7.2</td>
</tr>
<tr>
<td>Category 8</td>
<td>10</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>14411</td>
<td>134400</td>
<td>7.2</td>
</tr>
<tr>
<td>Category 9</td>
<td>15</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>20251</td>
<td>172800</td>
<td>10.1</td>
</tr>
<tr>
<td>Category 10</td>
<td>15</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>27952</td>
<td>172800</td>
<td>14.0</td>
</tr>
<tr>
<td>Category 11</td>
<td>5</td>
<td>QPSK</td>
<td>2</td>
<td>3630</td>
<td>14400</td>
<td>0.9</td>
</tr>
<tr>
<td>Category 12</td>
<td>5</td>
<td>QPSK</td>
<td>1</td>
<td>3630</td>
<td>28800</td>
<td>1.8</td>
</tr>
<tr>
<td>Category 13</td>
<td>15</td>
<td>QPSK, 16QAM, 64QAM</td>
<td>1</td>
<td>35280</td>
<td>259200</td>
<td>17.6</td>
</tr>
<tr>
<td>Category 14</td>
<td>15</td>
<td>QPSK, 16QAM, 64QAM</td>
<td>1</td>
<td>42192</td>
<td>259200</td>
<td>21.1</td>
</tr>
<tr>
<td>Category 15</td>
<td>15</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>23370</td>
<td>345600</td>
<td>23.3</td>
</tr>
<tr>
<td>Category 16</td>
<td>15</td>
<td>QPSK, 16QAM</td>
<td>1</td>
<td>27952</td>
<td>345600</td>
<td>28.0</td>
</tr>
<tr>
<td>Category 17</td>
<td>15</td>
<td>QPSK, 16QAM, 64QAM/MIMO: QPSK, 16QAM</td>
<td>1</td>
<td>35280/23370</td>
<td>259200/345600</td>
<td>17.6/23.3</td>
</tr>
<tr>
<td>Category 18</td>
<td>15</td>
<td>QPSK, 16QAM, 64QAM/MIMO: QPSK, 16QAM</td>
<td>1</td>
<td>42192/27952</td>
<td>259200/345600</td>
<td>21.1/28.0</td>
</tr>
<tr>
<td>Category 19</td>
<td>15</td>
<td>QPSK, 16QAM, 64QAM</td>
<td>1</td>
<td>35280</td>
<td>518400</td>
<td>35.2</td>
</tr>
<tr>
<td>Category 20</td>
<td>15</td>
<td>QPSK, 16QAM, 64QAM</td>
<td>1</td>
<td>42192</td>
<td>518400</td>
<td>42.2</td>
</tr>
</tbody>
</table>

Note: UEs of Categories 15 – 20 support MIMO

cf. TS 25.306
E-DCH – UE Physical Layer Capabilities

<table>
<thead>
<tr>
<th>E-DCH Category</th>
<th>Max. num. Codes</th>
<th>Min SF</th>
<th>EDCH TTI</th>
<th>Maximum MAC-e TB size</th>
<th>Theoretical maximum PHY data rate (Mbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>1</td>
<td>SF4</td>
<td>10 msec</td>
<td>7110</td>
<td>0.71</td>
</tr>
<tr>
<td>Category 2</td>
<td>2</td>
<td>SF4</td>
<td>10 msec/ 2 msec</td>
<td>14484/ 2798</td>
<td>1.45/ 1.4</td>
</tr>
<tr>
<td>Category 3</td>
<td>2</td>
<td>SF4</td>
<td>10 msec</td>
<td>14484</td>
<td>1.45</td>
</tr>
<tr>
<td>Category 4</td>
<td>2</td>
<td>SF2</td>
<td>10 msec/ 2 msec</td>
<td>20000/ 5772</td>
<td>2.0/ 2.89</td>
</tr>
<tr>
<td>Category 5</td>
<td>2</td>
<td>SF2</td>
<td>10 msec</td>
<td>20000</td>
<td>2.0</td>
</tr>
<tr>
<td>Category 6</td>
<td>4</td>
<td>SF2</td>
<td>10 msec/ 2 msec</td>
<td>20000/ 11484</td>
<td>2.0/ 5.74</td>
</tr>
<tr>
<td>Category 7 (Rel.7)</td>
<td>4</td>
<td>SF2</td>
<td>10 msec/ 2 msec</td>
<td>20000/ 22996</td>
<td>2.0/ 11.5</td>
</tr>
</tbody>
</table>

NOTE 1: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two codes with SF4

NOTE 2: UE Category 7 supports 16QAM

cf. 25.306
Continuous Packet Connectivity (CPC)

- Uplink DPCCH gating during inactivity → significant reduction in UL interference
- F-DPCH gating during inactivity
- New uplink DPCCH slot format optimized for transmission
 DPCCH only

- HS-SCCH-less transmission introduced to reduce signaling bottleneck for real-time-services on HSDPA

CPC significantly reduces control channel overhead for low bit rate real-time services (e.g. VoIP)
CPC Performance Benefits

- CPC provides up to a factor of two VoIP on HSPA capacity benefit compared to Rel-99 AMR12.2 circuit voice and 35-40% benefit compared to Rel-6 VoIP on HSPA

![Graph showing VoIP capacity gains for AMR12.2, AMR7.95, and AMR5.9]

Note: All capacity gains normalized to AMR12.2 Circuit Voice Capacity

CPC provides significant VoIP on HSPA capacity benefits

All VoIP on HSPA capacities assume two receive antennas in the terminal
“Always On” Enhancement of CPC

- CPC allows UEs in CELL_DCH to “sleep” during periods of inactivity
 - Reduces signaling load and battery consumption (in combination with DRX)
- Allows users to be kept in CELL_DCH with HSPA bearers configured
- Need to page and re-establish bearers leads to call set up delay

Without CPC, users typically kept in URA_PCH or CELL_PCH state to save radio resources and battery

- CPC avoids re-establishment delays → improves “always on” experience
Enhanced CELL_FACH & Enhanced Paging Procedure

- UEs are not always kept in CELL_DCH state, eventually fall back to CELL_PCH/URA_PCH
- HSPA+ introduces enhancements to reduce the delay in signaling the transition to CELL_DCH → use of HSDPA in CELL_FACH and URA/CELL_PCH states instead of S-CCPCH
 - Enhanced CELL_FACH
 - Enhanced Paging procedure
- In Rel.-8 work item opened to improve RACH procedure
 - Direct use of HSUPA in CELL_FACH

Enhanced CELL_FACH/Paging/RACH reduces setup delay → improves PoC
E-RACH – High level description

- RACH preamble ramping as in R’99 with AICH/E-AICH acknowledgement
- Transition to E-DCH transmission in CELL_FACH
 - Possibility to seamlessly transfer to Cell_DCH
- NodeB can control common E-DCH resource in CELL_FACH
 - Resource assignment indicated from NodeB to UE
UTRAN Architecture

TCP RTT:
~300ms

Multiple ARQ loops at different levels
RLC Throughput Limit vs. RLC Window Size

Theoretical limit: PHY >> RLC

Options to increase data rate:
- Increase PDU size/
 RLC window
- Reduce RTT

HSDPA increases peak data rate significantly, while it does not reduce RLC RTT equivalently!
Enhanced Layer-2 Support for High Data Rates

- Release 6 RLC layer cannot support new peak rates offered by HSPA+ features such as MIMO & 64-QAM
 - RLC-AM peak rate limited to ~13 Mbps, even with aggressive settings for the RLC PDU size and RLC-AM window size
- Release 7 introduces new Layer-2 features to improve HSDPA
 - Flexible RLC PDU size
 - MAC-ehs layer segmentation/reassembly (based on radio conditions)
 - MAC-ehs layer flow multiplexing
- Release 8 improves E-DCH
 - MAC-i/ MAC-is

Layer-2 enhancements to support higher rates of HSPA+
MAC-ehs in NodeB

MAC-ehs Functions (TS 25.321)
- Flow Control
- Scheduling/ Priority handling
- HARQ handling
- TFRC Selection
- Priority Queue Mux
- Segmentation
Evolved HSPA Architecture (1) – Objectives

- Further improve latency and bit rate with limited and controlled hardware and software impacts
- Take advantage of these improvements as soon as today
 - E.g. independently of the availability of the SAE Core
- Operate as a packet-only network based on shared channels only
- Backwards compatible with legacy terminals
- Simple upgrade of existing infrastructure (for both hardware, software)
2 deployment scenarios: standalone UTRAN or carrier sharing with "legacy" UTRAN
Evolved HSPA Architecture (3): Key features

- Optimal efficiency with all radio functions grouped together (Radio bearer control, RRC, handover control, RLC/MAC)

- Optimisation of resources
 - Central management of common channels

- Synergy with LTE
 - RLC, RRC already in the nodeB+
 - Ciphering and compression already in NodeB+ (with decision of PDCP in LTE eNodeB)
Home NodeB – Background

- Home NodeB (aka Femtocell) located at the customers premise
 - Connected via customers fixed line (e.g. DSL)
 - Small power (~100mW) to only provide coverage inside/ close to the building

- Advantages
 - Improved coverage esp. indoor
 - Single device for home/ on the move
 - Special billing plans (e.g. home zone)

- Challenges
 - Interference
 - Security
 - Costs
Home NodeB architecture principles based on extending Iu interface down to HNB (new Iuh interface)

RAN Gateway Approach with new “Iuh” Interface

- **Approach**
 - Leverage Standard CN Interfaces (Iu-CS/PS)
 - Minimise functionality within Gateway
 - Move RNC Radio Control Functions to Home NodeB and extend Iu NAS & RAN control layers over IP network

- **Features**
 - Security architecture
 - Plug-and-Play approach
 - Femto local control protocol
 - CS User Plane protocol
 - PS User Plane protocol
 - FMS interface
Summary

- Enhancements for HSDPA & E-DCH suggested for UMTS Rel.-7 & 8
 - Investment protection for HSPA operators
 - Fill the gap before deployment of LTE
 - Provide alternative to LTE in some selected scenarios

- Improvements on capacity and performance
 - Higher peak data rates
 - Signaling improvements
 - Architecture evolution

- HSPA+ features were designed to provide a smooth evolution from Rel-99 or Rel-5/Rel-6 HSPA by enabling:
 - Backwards compatibility
 - Legacy Rel-99/Rel-5/Rel-6 terminals can be supported on an HSPA+ carrier simultaneously with HSPA+ traffic
 - New HSPA+ terminals likely with support Rel-99 and/or Rel-5/Rel-6 HSPA
 - Simple upgrade of existing infrastructure (for both HW & SW)
A Smooth Evolution to HSPA+

HSPA+ IMPLEMENTATION
- 64-QAM DL/16-QAM UL, MIMO, L2 enh., CPC
- Enhanced CELL_FACH/ RACH/ Paging, Architecture Enhancements

HSPA+ Key Takeaways
- Higher Bit Rates & Increased Capacity
- Reduced Delay
- Smooth Evolution to HSPA+
- More than 2x HSPA peak rates, 35-40% improvement in VoIP capacity
- Saves 100s of ms of setup delay
- Coexistence with Rel99/HSDPA/HSUPA, SW upgrade to support HSPA+, availability expected 2008-2009

Enhanced performance on W-CDMA/HSPA through radio improvements and architecture evolution; smooth migration to LTE
HSDPA References

- **Papers:**

- **Standards**
 - TS 25.xxx series: RAN Aspects
 - TR 25.308 “HSDPA: UTRAN Overall Description (Stage 2)”
 - TR 25.319 “Enhanced Uplink: Overall Description (Stage 2)”
 - TR 25.903 “Continuous Connectivity for Packet Data Users”
 - TR 25.876 “Multiple-Input Multiple Output Antenna Processing for HSDPA”
 - TR 25.999 “HSPA Evolution beyond Release 7 (FDD)”
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICH</td>
<td>Acquisition Indicator Channel</td>
</tr>
<tr>
<td>AMR</td>
<td>Adaptive Multi-Rate</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>CLTD</td>
<td>Closed Loop Transmit Diversity</td>
</tr>
<tr>
<td>CPC</td>
<td>Continuous Packet Connectivity</td>
</tr>
<tr>
<td>CQI</td>
<td>Channel Quality Information</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>E-RACH</td>
<td>Enhanced Random Access Channel</td>
</tr>
<tr>
<td>F-DPCH</td>
<td>Fractional Dedicated Physical Control Channel</td>
</tr>
<tr>
<td>GW</td>
<td>Gateway</td>
</tr>
<tr>
<td>HNB</td>
<td>Home NodeB</td>
</tr>
<tr>
<td>HOM</td>
<td>Higher Order Modulation</td>
</tr>
<tr>
<td>HSPA</td>
<td>High-Speed Packet-Access</td>
</tr>
<tr>
<td>IA</td>
<td>Intelligent Antenna</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>MAC-ehs</td>
<td>enhanced high-speed Medium Access Control</td>
</tr>
<tr>
<td>MAC-i/is</td>
<td>improved E-DCH Medium Access Control</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple-Input Multiple-Output</td>
</tr>
<tr>
<td>Mux</td>
<td>Multiplexing</td>
</tr>
<tr>
<td>PARC</td>
<td>Per Antenna Rate Control</td>
</tr>
<tr>
<td>PCI</td>
<td>Precoding Control Information</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>Rx</td>
<td>Receive</td>
</tr>
<tr>
<td>RTT</td>
<td>Round Trip Time</td>
</tr>
<tr>
<td>SDU</td>
<td>Service Data Unit</td>
</tr>
<tr>
<td>SAE</td>
<td>System Architecture Evolution</td>
</tr>
<tr>
<td>S-CPICH</td>
<td>Secondary Common Pilot Channel</td>
</tr>
<tr>
<td>SDMA</td>
<td>Spatial-Division Multiple-Access</td>
</tr>
<tr>
<td>SINR</td>
<td>Signal-to-Interference plus Noise Ratio</td>
</tr>
<tr>
<td>SISO</td>
<td>Single-Input Single-Output</td>
</tr>
<tr>
<td>SM</td>
<td>Spatial Multiplexing</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over Internet Protocol</td>
</tr>
<tr>
<td>64QAM</td>
<td>64 (state) Quadrature Amplitude Modulation</td>
</tr>
</tbody>
</table>